135 research outputs found
Efficient numerical approximation of a non-regular Fokker--Planck equation associated with first-passage time distributions
In neuroscience, the distribution of a decision time is modelled by means of
a one-dimensional Fokker--Planck equation with time-dependent boundaries and
space-time-dependent drift. Efficient approximation of the solution to this
equation is required, e.g., for model evaluation and parameter fitting.
However, the prescribed boundary conditions lead to a strong singularity and
thus to slow convergence of numerical approximations. In this article we
demonstrate that the solution can be related to the solution of a parabolic PDE
on a rectangular space-time domain with homogeneous initial and boundary
conditions by transformation and subtraction of a known function. We verify
that the solution of the new PDE is indeed more regular than the solution of
the original PDE and proceed to discretize the new PDE using a space-time
minimal residual method. We also demonstrate that the solution depends
analytically on the parameters determining the boundaries as well as the drift.
This justifies the use of a sparse tensor product interpolation method to
approximate the PDE solution for various parameter ranges. The predicted
convergence rates of the minimal residual method and that of the interpolation
method are supported by numerical simulations
Recommended from our members
Prior information use and response caution in perceptual decision-making:No evidence for a relationship with autistic-like traits
Interpreting the world around us requires integrating incoming sensory signals with prior information. Autistic individuals have been proposed to rely less on prior information and make more cautious responses than non-autistic individuals. Here, we investigated whether these purported features of autistic perception vary as a function of autistic-like traits in the general population. We used a diffusion model framework, whereby decisions are modelled as noisy evidence accumulation processes towards one of two bounds. Within this framework, prior information can bias the starting point of the evidence accumulation process. Our pre-registered hypotheses were that higher autistic-like traits would relate to reduced starting point bias caused by prior information and increased response caution (wider boundary separation). 222 participants discriminated the direction of coherent motion stimuli as quickly and accurately as possible. Stimuli were preceded with a neutral cue (square) or a directional cue (arrow). 80% of the directional cues validly predicted the upcoming motion direction. We modelled accuracy and response time data using a hierarchical Bayesian model in which starting point varied with cue condition. We found no evidence for our hypotheses, with starting point bias and response caution seemingly unrelated to Adult Autism Spectrum Quotient (AQ) scores. Alongside future research applying this paradigm to autistic individuals, our findings will help refine theories regarding the role of prior information and altered decision-making strategies in autistic perception. Our study also has implications for models of bias in perceptual decision-making, as the most plausible model was one that incorporated bias in both decision-making and sensory processing.</p
Recommended from our members
On the importance of avoiding shortcuts in applying cognitive models to hierarchical data
Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity of these biases, we conducted a simulation study for a two-group experiment. We first considered a modeling strategy that ignores the hierarchical data structure. In line with theoretical results, our simulations showed that Bayesian and frequentist methods that rely on this strategy are biased towards the null hypothesis. Secondly, we considered a modeling strategy that takes a two-step approach by first obtaining participant-level estimates from a hierarchical cognitive model and subsequently using these estimates in a follow-up statistical test. Methods that rely on this strategy are biased towards the alternative hypothesis. Only hierarchical models of the multilevel data lead to correct conclusions. Our results are particularly relevant for the use of hierarchical Bayesian parameter estimates in cognitive modeling
A review of applications of the Bayes factor in psychological research
The last 25 years have shown a steady increase in attention for the Bayes factor as a tool for hypothesis evaluation and model selection. The present review highlights the potential of the Bayes factor in psychological research. We discuss six types of applications: Bayesian evaluation of point null, interval, and informative hypotheses, Bayesian evidence synthesis, Bayesian variable selection and model averaging, and Bayesian evaluation of cognitive models. We elaborate what each application entails, give illustrative examples, and provide an overview of key references and software with links to other applications. The paper is concluded with a discussion of the opportunities and pitfalls of Bayes factor applications and a sketch of corresponding future research lines
Recommended from our members
Consensus-based guidance for conducting and reporting multi-analyst studies
Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
Consensus-based guidance for conducting and reporting multi-analyst studies
International audienceAny large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
Of monkeys and men:Impatience in perceptual decision-making
For decades sequential sampling models have successfully accounted for human and monkey decision-making, relying on the standard assumption that decision makers maintain a pre-set decision standard throughout the decision process. Based on the theoretical argument of reward rate maximization, some authors have recently suggested that decision makers become increasingly impatient as time passes and therefore lower their decision standard. Indeed, a number of studies show that computational models with an impatience component provide a good fit to human and monkey decision behavior. However, many of these studies lack quantitative model comparisons and systematic manipulations of rewards. Moreover, the often-cited evidence from single-cell recordings is not unequivocal and complimentary data from human subjects is largely missing. We conclude that, despite some enthusiastic calls for the abandonment of the standard model, the idea of an impatience component has yet to be fully established; we suggest a number of recently developed tools that will help bring the debate to a conclusive settlement
Science Forum: Consensus-based guidance for conducting and reporting multi-analyst studies
Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease
Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
- …
