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Abstract
In neuroscience, the distribution of a decision time is modelled by means of a one-
dimensional Fokker–Planck equationwith time-dependent boundaries and space-time-
dependent drift. Efficient approximation of the solution to this equation is required,
e.g., for model evaluation and parameter fitting. However, the prescribed boundary
conditions lead to a strong singularity and thus to slow convergence of numerical
approximations. In this article we demonstrate that the solution can be related to the
solution of a parabolic PDE on a rectangular space-time domain with homogeneous
initial and boundary conditions by transformation and subtraction of a known function.
We verify that the solution of the new PDE is indeed more regular than the solution of
the original PDE and proceed to discretize the new PDE using a space-time minimal
residual method. We also demonstrate that the solution depends analytically on the
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parameters determining the boundaries as well as the drift. This justifies the use of
a sparse tensor product interpolation method to approximate the PDE solution for
various parameter ranges. The predicted convergence rates of the minimal residual
method and that of the interpolation method are supported by numerical simulations.

Keywords Fokker–Planck equation · Time-dependent spatial domain · Space-time
variational formulation · Parameter-dependent PDE · Sparse tensor product
interpolation

Mathematics Subject Classification 30B40 · 35A15 · 35B65 · 35K08 · 60H30 ·
65D05 · 65M12

1 Introduction

In 1978 Ratcliff [24] introduced a model for binary decision processes based on dif-
fusion processes. This model turned out to agree well with experimental data; Gold
and Shadlen [17] provides a neurophysiological explanation for its success. Indeed,
the solution (Xt )t≥0 of a one-dimensional stochastic differential equation is assumed
to describe the difference in activity of two competing neuron populations. At time
t = 0, the value X0 = x0 ∈ R represents the resting-state activity of the neuron
populations. A decision is triggered when (Xt )t≥0 first reaches one of two (possibly
time-dependent) critical values α or β, each reflecting an outcome of the decision
process.

In a typical decision experiment, scientists can only measure the decision time
and outcome. Parameter fitting thus requires access to the decision time distributions,
which are rarely known explicitely. Ad hoc numerical simulations are costly whence
efficient simulation methods are much sought-after [15, 18].

In this article we extend and improve a simulationmethod introduced in [30], which
is based on the Fokker–Planck equation associated to the decision time. In particular,
this article may be viewed as the theoretical counterpart of our publication [3], which
is aimed at the neuroscientific community.

Linking the first hitting time of a stochastic differential equation to a Fokker–Planck
equation is a well-known approach that has also been applied in e.g. astrophysics [7]
and cell biology [20]; for an overview see [1]. In particular, although we only con-
sider examples arising from neuroscience, the simulation method we introduce is also
relevant for other applications.

To explain the Fokker–Planck based approach consider the following stochastic
differential equation:

dX y
t = μ(t, X y

t ) dt + σ dWt t ∈ [0,∞), X y
0 = y. (1.1)

Here (Wt )t∈[0,∞) is a Brownian motion, σ ∈ (0,∞) is the diffusion parameter, μ ∈
C([0,∞) × R) is the (time- and state-dependent) drift and y ∈ R is the initial value.
Let α, β ∈ C1([0,∞)) satisfy α ≤ β, and for all y ∈ [α(0), β(0)] define the stopping
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Efficient numerical approximation of a non-regular… 1357

times α̂y, β̂y by
α̂y := inf{t ∈ [0,∞) : X y

t ≤ α(t)},
β̂y := inf{t ∈ [0,∞) : X y

t ≥ β(t)}. (1.2)

The quantities of interest in neurophysiological decision models are the first hitting
time probabilities: P[α̂y ≤ min(τ, β̂y)], where τ ∈ (0,∞) and y ∈ [α(0), β(0)].
These probabilities can be linked to the solution of a parabolic PDE. Indeed, assume
α < β on [0, τ ] for some τ ∈ (0,∞), set Q := {(t, x) ∈ (0, τ )× R : α(τ − t) < x <

β(τ − t))}, and consider the following PDE:

⎧
⎪⎨

⎪⎩

∂t F(t, x) = σ 2

2 ∂2x F(t, x) + μ(τ − t, x)∂x F(t, x) (t, x) ∈ Qτ ,

F(t, α(τ − t)) = 1, F(t, β(τ − t)) = 0 t ∈ (0, τ ),

F(0, x) = 0 x ∈ (α(τ), β(τ )).

(1.3)
Under some additional regularity assumptions on α, β, and μ it can be shown that a
solution to (1.3) exists and satisfies

P[α̂y ≤ min(τ, β̂y)] = F(τ, y), α(0) ≤ y ≤ β(0). (1.4)

(see [30, Appendix A] for the case that α and β are constant and μ does not depend
on time or [23, Chapter 7] for general Fokker–Planck equations, also known in this
setting as a backward Kolmogorov equation).

In [30], a Crank–Nicolson method is used to approximate solutions to (1.3) in the
case that α, β, and μ are constant. One advantage of this setting is that one only needs
to solve a single PDE of type (1.3) in order to obtain the first hitting time probabilities
P[α̂y ≤ min(t, β̂y)] for all t ∈ [0, τ ], y ∈ [α(0), β(0)]. However, due to the fact
that F is discontinuous at (t, x) = (0, α(τ )), no proof of convergence of the Crank–
Nicolson for decreasing step-sizes seems available. At best, reduced rates are to be
expected. Moreover, various authors have argued that time-dependent boundaries α

and β and space-time-dependent drift μ provide a more realistic model for decision
processes, for an overview see [18, 25].

In this article we extend [30] to include diffusion models with time-dependent
boundaries and non-constant drift. We improve the efficiency of the numerical simu-
lation by not approximating the solution F to (1.3) directly, instead, we approximate
the solution to a parabolic PDE on a rectangular domain with homogeneous initial and
boundary conditions constructed such that its difference with F (transformed to the
same rectangular domain) is a function forwhich a rapidly converging series expansion
is known.

More specifically, in Section 2 we demonstrate that if α, β are once continuously
differentiable, then (1.3) can be transformed into a parabolic PDE on a rectangular
domain with a space-time-dependent drift. Next, in Section 3 we demonstrate that
by subtracting a known, discontinuous function, we obtain a parabolic PDE with
homogeneous boundary conditions, see (3.1) below. We analyze the regularity of the
solution e to this equation and verify that it is indeed smoother than F , seeCorollary 3.1
and Theorem 3.1.
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1358 U. Boehm et al.

In Section 4 we apply a minimal residual method [2, 28, 29] to approximate the
solution e to (3.1). This method is known to give quasi-best approximations from the
selected trial space in the norm on a natural solution space being the intersection of
two Bochner spaces. Taking as trial space the space of continuous piecewise bilinears
with respect to a uniform partition of the space-time cylinder into rectangles withmesh
width h, in Theorem 4.1 the optimal error bound of order h is shown for the solution e
to (3.1).

In Section 5 we consider the situation that μ, α, and β can be parametrized analyt-
ically and verify that in this case the corresponding solution e to (3.1) (transformed
onto the unit square) depends analytically on these parameters as well as on the final
time τ , see Theorem 5.1. This justifies the use of a sparse tensor-product interpola-
tion [22] to determine the solution e to (3.1) efficiently for multiple end-time and
parameter values. Finally, in Section 6 we provide numerical simulations for three
different decision models taken from the neurophysiological literature.

In our parallel publication [3]mentioned above,weprovide further numerical exper-
iments and code. There, we apply the Crank–Nicolson method (without giving any
error analysis) to approximate the solution e to (3.1). In the examples we consider it
appears that the Crank–Nicolson method leads to similar convergence as the minimal
residual method. Although we only provide a rigorous error analysis for the mini-
mal residual method, Crank–Nicolson may be preferred in practice as it is easier to
implement. We refer to [3] for further details.

1.1 Notation

In this work, by C � D we mean that C can be bounded by a multiple of D, indepen-
dently of parameters which C and D may depend on. Obviously, C � D is defined as
D � C , and C � D as C � D and C � D.

For normed linear spaces E and F , by L(E, F) we denote the normed linear space
of bounded linear mappings E → F , and by Liso(E, F) its subset of boundedly
invertible linear mappings E → F .

2 Transforming the Fokker–Planck equation to a rectangular
space-time domain

In this sectionwedemonstrate that (1.3) can be transformed into a PDEon a rectangular
space-time domain, see (2.3) below.ThePDE in (2.3) below forms the starting point for
the remainder of this article, which iswhywe use tildes in (2.1) below to distinguish the
variables and coefficients of the non-transformed equation from those in (2.3). Indeed,
let T̃ ∈ (0,∞], assume a, b ∈ C1([0, T̃ )) satisfy a(t̃) < b(t̃) for all t̃ ∈ [0, T̃ ), set
Q̃ := {(t̃, x̃) ∈ (0, T̃ ) × R : a(t̃) < x̃ < b(t̃)}, let ṽ ∈ L∞(Q̃), and consider the
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Efficient numerical approximation of a non-regular… 1359

following parabolic initial- and boundary value problem:

⎧
⎪⎨

⎪⎩

∂t̃ ũ(t̃, x̃) = ∂2x̃ ũ(t̃, x̃) + ṽ(t̃, x̃)∂x̃ ũ(t̃, x̃) (t̃, x̃) ∈ Q̃,

ũ(t̃, a(t̃)) = 1, ũ(t̃, b(t̃)) = 0 t̃ ∈ (0, T̃ ),

ũ(0, x̃) = 0 x̃ ∈ (a(0), b(0)).

(2.1)

Note that this is (1.3) with ũ(t̃, x̃) = F( 2t̃
σ 2 , x̃), T̃ = σ 2τ

2 , a(t̃) = α( 2
σ 2 (T̃ − t̃)),

b(t̃) = β( 2
σ 2 (T̃ − t̃)), ṽ(t̃, x̃) = 2

σ 2 μ( 2
σ 2 (T̃ − t̃), x̃).

Now, set T := ∫ T̃0 |b(s̃) − a(s̃)|−2 ds̃ (where possibly T = ∞) and define

θ : [0, T ) → [0, T̃ ) by θ(t) = sup
{
r̃ ∈ [0, T̃ ) : ∫ r̃0 |b(s̃) − a(s̃)|−2 ds̃ ≤ t

}
, then

θ is a bijection and θ−1(t̃) = ∫ t̃0 |b(s̃) − a(s̃)|−2 ds̃. In particular, from t = θ−1(θ(t))
we obtain that θ satisfies the following ODE

θ ′(t) = (b(θ(t)) − a(θ(t))
)2

, θ(0) = 0. (2.2)

With

� := (0, 1),

and ξ : [0, T̃ ) × � → R defined by

ξ(t̃, x) := (1 − x)a(t̃) + xb(t̃),

we have that

[0, T ) × � → Q̃ : (t, x) �→ (θ(t), ξ(θ(t), x))

is a bijection with inverse

(t̃, x̃) �→
(
θ−1(t̃),

x̃ − a(t̃)

b(t̃) − a(t̃)

)
.

Defining u, v : [0, T ) × � → R by

u(t, x) := ũ(θ(t), ξ(θ(t), x)),

v(t, x) := (b(θ(t)) − a(θ(t)))
[
ṽ(θ(t), ξ(θ(t), x)) + (1 − x)a′(θ(t))) + xb′(θ(t))

]
,

we have u(t, 0) = 1, u(t, 1) = 0 (t ∈ (0, T )), and u(0, x) = 0 (x ∈ �). Moreover,
for (t, x) ∈ (0, T ) × �, one has

∂xu(t, x) = (b(θ(t)) − a(θ(t)))∂x̃ ũ(θ(t), ξ(θ(t), x)),

∂2x u(t, x) = (b(θ(t)) − a(θ(t)))2∂2x̃ ũ(θ(t), ξ(θ(t), x)),
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1360 U. Boehm et al.

and

∂t u(t, x) = θ ′(t)
{
∂t̃ ũ(θ(t), ξ(θ(t), x)) + ∂t̃ξ(θ(t), x)∂x̃ ũ(θ(t), ξ(θ(t), x))

}

= (b(θ(t)) − a(θ(t)))2
{
∂t̃ ũ(θ(t), ξ(θ(t), x))

+ [(1 − x)a′(θ(t)) + xb′(θ(t))
]
∂x̃ ũ(θ(t), ξ(θ(t), x))

}

= (b(θ(t)) − a(θ(t)))2
{
∂2x̃ ũ(θ(t), ξ(θ(t), x))

+ [ṽ(θ(t), ξ(θ(t), x)) + (1 − x)a′(θ(t)) + xb′(θ(t))
]
∂x̃ ũ(θ(t), ξ(θ(t), x))

}

= ∂2x u(t, x) + v(t, x)∂xu(t, x).

In other words, with

I := (0, T ),

(2.1) is equivalent to finding u = u(v) that solves

⎧
⎪⎨

⎪⎩

∂t u(t, x) = ∂2x u(t, x) + v(t, x)∂xu(t, x) (t, x) ∈ I × �,

u(t, 0) = 1, u(t, 1) = 0 t ∈ I ,

u(0, x) = 0 x ∈ �.

(2.3)

To be able to numerically solve (2.3), we assume from now on that T < ∞.

Example 2.1 Bowman, Kording, and Gottfried [4] suggested collapsing boundaries,
i.e., in (1.3) they take α(t) := β0t

2T0
and β(t) := β0(1− t

2T0
) for some fixed parameters

β0, T0 ∈ (0,∞). Translating this to the setting of (2.1), this leads to a(t̃) := β0(T̃−t̃)
σ 2T0

andb(t̃) := β0(1− T̃−t̃
σ 2T0

) (note that it onlymakes sense to consider T̃ ∈ (0, σ 2T0
2 ) in this

setting). Note that it is easier to first determine θ−1(t̃) = ∫ t̃0 |b(s̃)−a(s̃)|−2 ds̃ and then

determine T = θ−1(T̃ ) and θ = (θ−1)−1. Indeed, θ−1(t̃) = σ 4T 2
0 t̃

β2
0 (σ 2T0−2T̃ )(σ 2T0−2T̃+2t̃)

and thus T = σ 2T0 T̃
β2
0 (σ 2T0−2T̃ )

and

θ(t) = β2
0 (σ

2T0 − 2T̃ )2t

σ 4T 2
0 − 2β2

0 (σ
2T0 − 2T̃ )t

, t ∈ [0, T ).

By observing that (1 − x)a′(θ(t)) + xb′(θ(t)) = (2x−1)β0
σ 2T0

, and b(θ(t)) − a(θ(t))

= b0(1−2σ 2T0 T̃ )

σ 4T 2
0 −2β2

0 (σ 2T0−2T̃ )t
, one obtains v in terms of ṽ.
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3 Regularity of the Fokker–Planck equation

Let u(v) denote the solution to (2.3) for some given drift function v. Due to the
discontinuity between boundary and initial data, it is clear that u(v) is discontinuous at
the corner (t, x) = (0, 0). This reduces the rate of convergence of standard numerical
methods and makes it difficult to provide a theoretical bound on the convergence
rate. However, for constant drift v, a rapidly converging series expansion of u(v) is
known ([16]), which allows to efficiently approximate u(v) within any given positive
tolerance. Knowing this, our approach to approximate u(v) for variable v ∈ C(I × �)

is to approximate the difference

e = e(v) = u(v) − u(v0), where v0 := v(0, 0).

This function e(v) solves

⎧
⎪⎨

⎪⎩

∂t e(t, x) = ∂2x e(t, x)+v(t, x)∂x e(t, x)+(v(t, x) − v0)∂xu(v0) (t, x) ∈ I × �,

e(t, 0) = 0, e(t, 1) = 0 t ∈ I ,

e(0, x) = 0 x ∈ �,

(3.1)

which we solve approximately with a numerical method. To derive a priori bounds
for the approximation error, we analyze the smoothness of e(v), see Section 3.3. In
particular, under additional smoothness conditions on v, and using that (v−v0)(0, 0) =
0, we show that

e(v) is more smooth than u(v0), and thus than u(v),

which shows the benefit of applying the numerical method to (3.1) instead of directly
to (2.3).

It turns out that for any v the smoothness of u(v) is determined by that of the
solution uH of the heat equation on (0,∞) × R that is 0 at t = 0 and 1 at x = 0. Its
smoothness is the topic of the next subsection.

3.1 The heat kernel

The function

H(t, x) := 1

2
√

π t
e− x2

4t

is the heat kernel. It satisfies

∂t H(t, x) = ∂2x H(t, x) (t, x) ∈ (0,∞) × R,

lim
t↓0

∫

R

H(t, x)φ(x) dx = φ(0) for all φ ∈ D(R),

the latter being the space of test functions.
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Following [10, Ex. 2.14] and [14], for (t, x) ∈ (0,∞) × R we define

uH (t, x) := 2
∫ ∞

x
H(t, y) dy = 2√

π

∫ ∞
x

2
√
t

e−s2 ds = Erfc( x
2
√
t
).

Knowing that
∫∞
0

1√
π t
e− y2

4t dy = 1, and lim
t↓0
∫∞
x

1√
π t
e− y2

4t dy = 0 for x > 0, we have

⎧
⎪⎪⎨

⎪⎪⎩

2∂t uH (t, x) = ∂2x uH (t, x) (t, x) ∈ (0,∞) × R,

uH (t, 0) = 1 t > 0,

uH (0, x) := lim
t↓0 uH (t, x) = 0 x > 0.

The following lemma turns out to be handy to analyze the smoothness of uH

restricted to I × �.

Lemma 3.1 For p > 0, α, β ∈ R, it holds that
∫ T
0

∫ 1
0 |tαxβe− x2

4t |p dx dt < ∞ if and
only if pβ > −1 and p(2α + β) > −3.

Proof The mapping

� : {(λ, x) ∈ (0,∞) × (0, 1) : x < 2
√

λT
}→ (0, T ) × (0, 1) : (λ, x) �→ ( x

2

4λ
, x
)

is a diffeomorphism, and |D�(λ, x)| = x2

4λ2
. One obtains

∫ T

0

∫ 1

0
|tαxβe− x2

4t |p dx dt =
∫ ∞

0

∫ min(1,2
√

λT )

0

( x2

4λ

)α p
xβ pe−pλ x2

4λ2
dx dλ

= 4−α p−1
∫ ∞

0
λ−α p−2e−pλ

∫ min(1,2
√

λT )

0
x2α p+β p+2 dx dλ.

The integral over x is finite if and only if p(2α + β) > −3, and if so, the expression
is equal to

4−α p−1

2α p+β p+3

[
(2

√
T )2α p+β p+3

∫ 1
4T

0
λ(β p−1)/2e−pλdλ +

∫ ∞
1
4T

λ−α p−2e−pλ dλ
]

with the first integral being finite if and only if pβ > −1. ��
Following [31], we analyze the regularity of the solutions u(v) and e(v) of the

parabolic problems (2.3) and (3.1), respectively, in (intersections of) Bochner spaces.
In particular, the space L2(I ; H1(�))∩H1(I ; H−1(�)) plays an important role in this
and following sections. For the precise definition of this space and some properties
we refer to [31, Chapter 25]. With H1

0,{0}(I ) denoting the closure in H1(I ) of the

functions in C∞(I )∩ H1(I ) that vanish at 0, we have the following result concerning
the smoothness of uH restricted to I × �.
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Corollary 3.1 uH ∈ L2(I ; H1(�)) ∩ H1
0,{0}(I ; H−1(�)), but uH /∈ H1

0,{0}(I ; L2(�))

and uH /∈ L2(I ; H2(�)). Furthermore, t∂t∂xuH , x∂2x uH , t∂2x uH ∈ L2(I × �), and
x∂t∂xuH ∈ L2(I ; H−1(�)).

Proof By applications of Lemma 3.1, we infer that ∂xuH = −2H ∈ L2(I × �), and

that ∂t uH (t, x) = 1
2
√

π
xt− 3

2 e− x2
4t /∈ L2(I × �). This yields uH ∈ L2(I ; H1(�)) and

uH /∈ H1
0,{0}(I ; L2(�)).

If ∂x F = f , then f ∈ L2(I ; H−1(�)) if and only if F ∈ L2(I × �). We have
∫ x
−∞ ∂t uH (t, y) dy = − t−

1
2√
π
e− x2

4t ∈ L2(I × �), so indeed uH ∈ H1
0,{0}(I ; H−1(�)).

It holds

∂2x uH (t, x) = −2∂x H(t, x) = 1

2
√

π
xt−

3
2 e− x2

4t /∈ L2(I × �),

or uH /∈ L2(I ; H2(�)), but x∂2x uH , t∂2x uH ∈ L2(I × �).

We have ∂x∂t uH = (t− 3
2 − 1

2 x
2t− 5

2 ) e
− x2

4t

2
√

π
, so t∂x∂t uH ∈ L2(I × �). Prov-

ing that x∂x∂t uH ∈ L2(I ; H−1(�)) amounts to proving xt− 3
2 e− x2

4t , t− 5
2 x3e− x2

4t ∈
L2(I ; H−1(�)), i.e., proving that t− 3

2
∫ x
−∞ ye− y2

4t dy, t− 5
2
∫ x
−∞ y3e− y2

4t dy ∈ L2(I ×
�). The first function equals −2t− 1

2 e− x2
4t , which is in L2(I × �), and the second

function equals −8t− 1
2 e− x2

4t − 2t− 3
2 x2e− x2

4t , which is also in L2(I × �). ��

Finally in this subsection, notice that from ∂t uH (t, x) = 1
2
√

π
xt− 3

2 e− x2
4t , it follows

that for any x > 0 and k ∈ N0,

lim
t↓0 ∂kt uH (t, x) = 0. (3.2)

3.2 Regularity of the parabolic problemwith homogeneous initial and boundary
conditions

Knowing that e(v) is the solution of the parabolic problem (3.1) that has homogeneous
initial and boundary conditions, we study the regularity of such a problem.

Given functions v ∈ L∞(I × �) and f ∈ L2(I ; H−1(�)), let w solve

⎧
⎪⎨

⎪⎩

∂tw(t, x) = ∂2xw(t, x) + v(t, x)∂xw(t, x) + f (t, x) (t, x) ∈ I × �,

w(t, 0) = 0, w(t, 1) = 0 t ∈ I ,

w(0, x) = 0 x ∈ �,

(3.3)

where the spatial differential operators at the right-hand side should be interpreted in
a weak sense, i.e., ((∂2x + v∂x )η)(ζ ) := ∫D −∂xη∂xζ + v∂xη ζ dx . It is well-known
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that

L(v) := w �→ f ∈ Liso(L2(I ; H1
0 (�)) ∩ H1

0,{0}(I ; H−1(�)), L2(I ; H−1(�)))

(3.4)
(see, e.g., [31, Thm. 26.1]). Under additional smoothness conditions on the right-hand
side f beyond being in L2(I ; H−1(�)), additional smoothness of the solution w can
be demonstrated:

Proposition 3.1 a) If v ∈ W 1∞(I × �), then

L(v)−1 ∈ L
(
L2(I ; H1(�)) ∩ H1(I ; H−1(�)),

H1
0,{0}(I ; H1

0 (�)) ∩ H2(I ; H−1(�)) ∩ L2(I ; H3(�))
)
.

b) If v ∈ L∞(I × �), then

L(v)−1 ∈ L
(
L2(I × �), L2(I ; H2(�)) ∩ H1

0,{0}(I ; L2(�))
)
,

Proof a) If f ∈ L2(I ; H1(�)) ∩ H1(I ; H−1(�)), then also f ∈ H1(I ; H−1(�)),
and f (0, ·) ∈ L2(�) with ‖ f (0, ·)‖L2(�) � ‖ f ‖L2(I ;H1(�)) + ‖ f ‖H1(I ;H−1(�))

(see, e.g., [31, Thm. 25.5]). As shown in [31, Thm. 27.2 and its proof], from the
last two properties of f , and v ∈ W 1∞(I ; L∞(�)), one has w = L(v)−1 f ∈
H1
0,{0}(I ; H1

0 (�)) ∩ H2(I ; H−1(�)) with

‖w‖H1
0,{0}(I ;H1

0 (�))∩H2(I ;H−1(�)) � ‖ f ‖H1(I ;H−1(�)) + ‖ f (0, ·)‖L2(�).

To show the spatial regularity, i.e., w ∈ L2(I ; H3(�)), given a constant λ, we
define wλ(t, ·) = w(t, ·)e−λt , fλ(t, ·) = f (t, ·)e−λt . One infers that

(−∂2x−v∂x+λ)wλ = fλ − ∂twλ︸ ︷︷ ︸
gλ:=

on I×�, wλ(·, 0) = 0 = wλ(·, 1) on I , (3.5)

where, as before, the spatial differential operators should be interpreted in a weak
sense. Using that

∣
∣
∣
∣

∫

I

∫

D
v(∂xwλ)wλ dx dt

∣
∣
∣
∣ ≤ ‖v‖L∞(I×�)‖∂xwλ‖L2(I×�)‖wλ‖L2(I×�)

and Young’s inequality, one infers that for λ > 1
4‖v‖2L∞(I×�) the bilinear form

defined by the left-hand side of (3.5) is bounded and coercive on L2(I ; H1
0 (�)) ×

L2(I ; H1
0 (�)). Thus for λ > 1

4‖v‖2L∞(I×�) we have

A(v, λ) := wλ �→ gλ ∈ Liso(L2(I ; H1
0 (�)), L2(I ; H−1(�))).
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Realizing that ‖ · ‖2
Hk+2(�)

= ‖ dk

dxk
d2

dx2
· ‖2L2(�) + ‖ · ‖2

Hk+1(�)
, an induction and tensor

product argument shows A(0, 0)−1 ∈ L(L2(I ; Hk(�)), L2(I ; Hk+2(�))) for any
k ∈ N0. Writing

A(v, λ)−1 − A(0, 0)−1 = A(0, 0)−1(v∂x − λId)A(v, λ)−1,

and using that v∂x ∈ L(L2(I ; H1(�)), L2(I ; L2(�)) by v ∈ L∞(I × �), one
verifies that A(v, λ)−1 ∈ L(L2(I × �), L2(I ; H2(�))). Repeating the argument,
now using that v∂x ∈ L(L2(I ; H2(�)), L2(I ; H1(�)) by v ∈ L∞(I ;W 1∞(�)),
one has A(v, λ)−1 ∈ L(L2(I ; H1(�)), L2(I ; H3(�))). Knowing that fλ − ∂twλ

∈ L2(I ; H1(�)) with ‖ fλ − ∂twλ‖L2(I ;H1(�)) � ‖ f ‖L2(I ;H1(�)) + ‖ f ‖H1(I ;H−1(�)),
one infers that wλ and thus w ∈ L2(I ; H3(�)), and moreover ‖w‖L2(I ;H3(�)) �
‖ f ‖L2(I ;H1(�)) + ‖ f ‖H1(I ;H−1(�)).

b) Similar to Part a), it suffices to show that

L(v, λ)−1 := fλ �→ wλ ∈ L
(
L2(I × �), L2(I ; H2(�)) ∩ H1

0,{0}(I ; L2(�))
)
.

Knowing that L(v, λ)−1 ∈ L(L2(I ; H−1(�)), L2(I ; H1
0 (�))∩ H1

0,{0}(I ; H−1(�))
)
,

and L(v, λ) − L(0, 0) = −v∂x + λId ∈ L(L2(I ; H1
0 (�)), L2(I × �)

)
, the proof is

completed by L(v, λ)−1 − L(0, 0)−1 = L(0, 0)−1(L(0, 0) − L(v, λ))L(v, λ)−1 and
the maximal regularity result

L(0, 0)−1 ∈ L
(
L2(I × �), L2(I ; H2(�)) ∩ H1

0,{0}(I ; L2(�))
)

from, e.g., [11, 12]. ��

3.3 The regularity of e(v) = u(v) − u(v0)

Recall that uH denotes the solution of the heat equation studied in Section 3.1, that
u(v) denotes the solution to (3.1) for given v ∈ C(I × �), and v0 := v(0, 0). Since
e(v) solves (3.1), i.e., e(v) is the solution w of (3.3) for forcing function f given by

(v − v0)∂xu(v0)

= (v − v0)∂x (u(v0) − u(0)) + (v − v0)∂x (u(0) − uH ) + (v − v0)∂xuH ,
(3.6)

in view of the regularity results proven in Proposition 3.1, we establish smoothness of
e(v) by demonstrating smoothness of each of the three terms at the right-hand side of
(3.6).

Lemma 3.2 It holds that

u(0) − uH ∈ H1
0,{0}(I ; H1

0 (�)) ∩ H2(I ; H−1(�)) ∩ L2(I ; H3(�)).
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Proof The function w(t, x) := u(0)(t, x) − (uH (t, x) − xuH (t, 1)) satisfies
the homogeneous initial and boundary conditions from (3.3), and ∂tw(t, x) =
∂2xw(t, x) + x∂t uH (t, 1). By (3.2) we have (t, x) �→ x∂t uH (t, 1) ∈ L2(I ; H1(�)) ∩
H1(I ; H−1(�)), so that Proposition 3.1a) for v = 0 and f (t, x) = x∂t uH (t, 1) shows
that

w ∈ H1
0,{0}(I ; H1

0 (�)) ∩ H2(I ; H−1(�)) ∩ L2(I ; H3(�)).

Because, again by (3.2), (t, x) �→ xuH (t, 1) is in the same space, the proof is com-
pleted. ��
Lemma 3.3 For any v0 ∈ R, u(v0) − u(0) ∈ L2(I ; H2(�)) ∩ H1

0,{0}(I ; L2(�)).

Proof The functionw := u(v0)−u(0) satisfies the homogeneous initial- and boundary
conditions from (3.3), and ∂tw(t, x) = ∂2xw(t, x)+v0∂xw−v0∂xu(0). From ∂xu(0) ∈
L2(I × �) by Corollary 3.1 and Lemma 3.2, an application of Proposition 3.1b) for
v = v0 and f = −v0∂xu(0) completes the proof. ��
Lemma 3.4 If v ∈ W 1∞(I × �) ∩ L∞(I ;W 2∞(�)), then

(v − v0)∂xuH ∈ L2(I ; H1(�)) ∩ H1(I ; H−1(�)).

Proof Abbreviate g := (v − v0)∂xuH . Throughout the proof, we use the estimates for
uH proven in Corollary 3.1.

We startwith proving ∂t g = (∂tv)∂xuH+(v−v0)∂t∂xuH ∈ L2(I ; H−1(�)). Using
v ∈ W 1∞(I ; L∞(�)) and ∂xuH ∈ L2(I × �), the first term is even in L2(I × �).
Writing the second term as

(v(t, x) − v0)∂t∂xuH (t, x) = v(t,x)−v(0,x)
t t∂t∂xuH (t, x) + v(0,x)−v0

x x∂t∂xuH (t, x),

from t∂t∂xuH ∈ L2(I × �) and v(t,x)−v(0,x)
t ∈ L∞(I × �) by v ∈ W 1∞(I ; L∞(�)),

we have v(t,x)−v(0,x)
t t∂t∂xuH (t, x) ∈ L2(I × �). Similarly, from x∂t∂xuH (t, x) ∈

L2(I ; H−1(�)) and v(0,x)−v0
x ∈ L∞(I ;W 1∞(�)) by v ∈ L∞(I ;W 2∞(�)), we have

v(0,x)−v0
x x∂t∂xuH (t, x) ∈ L2(I ; H−1(�)), so that ∂t g ∈ L2(I ; H−1(�)).
It remains to show that g ∈ L2(I ; H1(�)). It is clear that (v−v0)∂xuH ∈ L2(I×�)

and (∂xv)∂xuH ∈ L2(I × �) by v ∈ L∞(I ;W 1∞(�)). Writing

(v(t, x) − v0)∂
2
x uH (t, x) = v(t,x)−v(0,x)

t t∂2x uH (t, x) + v(0,x)−v0
x x∂2x uH (t, x),

from v(t,x)−v(0,x)
t ,

v(0,x)−v0
x ∈ L∞(I ×�) by v ∈ W 1∞(I ×�), and both t∂2x uH (t, x)

and x∂2x uH (t, x) ∈ L2(I × �), we obtain g ∈ L2(I ; H1(�)), and the proof is com-
pleted. ��

By combining the results of the preceding three propositions with the regularity
result proven in Proposition 3.1 we obtain the following.
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Theorem 3.1 If v ∈ W 1∞(I × �) ∩ L∞(I ;W 2∞(�)), then

e(v) ∈ H1
0,{0}(I ; H1

0 (�)) ∩ H2(I ; H−1(�)) ∩ L2(I ; H3(�)).

Proof We obtain (v − v0)∂x (u(v0) − uH ) ∈ L2(I ; H1(�)) ∩ H1(I ; H−1(�)) from
Lemma 3.2 and 3.3, whereas Lemma 3.4 implies that (v−v0)∂xuH ∈ L2(I ; H1(�))∩
H1(I ; H−1(�)). We conclude that

(v − v0)∂xu(v0) ∈ L2(I ; H1(�)) ∩ H1(I ; H−1(�)),

so that an application of Proposition 3.1a) completes the proof. ��
Notice that as a consequence of Corollary 3.1, Lemma 3.2 and 3.3, u(v0) /∈

H1
0,{0}(I ; L2(�)) ∪ L2(I ; H2(�)). Comparing Corollary 3.1 with Theorem 3.1, we

conclude that

e(v) = u(v) − u(v0) is indeed smoother than u(v0), and thus than u(v),

confirming the claim we made at the beginning of Section 3.

4 Minimal residual method

For solving (3.3) (specifically for the forcing function f as in (3.6), i.e., for solving
e(v)), wewrite it in variational form, i.e., wemultiply it by test functions z : I×� → R

from a suitable collection, integrate it over I × �, and apply integration by parts with
respect to x . We thus arrive at

(Bw)(z) :=
∫

I

∫

D
∂tw(t, x)z(t, x) + ∂xw(t, x)∂x z(t, x) − v(t, x)∂xw(t, x)z(t, x) dx dt

=
∫

I

∫

D
f (t, x)z(t, x) dx dt =: f (z)

for all those test functions. With

X := L2(I ; H1
0 (�)) ∩ H1(I ; H−1(�)), Y := L2(I ; H1

0 (�)),

it is known that (B, γ0) ∈ Liso(X ,Y ′ × L2(�)), where γ0 := w �→ w(0, ·) denotes
the initial trace operator, see, e.g., [31, Chapter IV] or [27].

Already because X �= Y × L2(�), the well-posed system (B, γ0)w = ( f , 0)
cannot be discretized by simple Galerkin discretizations. Given a family (Xh)h∈� of
finite dimensional subspaces of X , as discrete approximations to w one may consider
the minimizers argminw̄∈Xh

‖Bw̄ − f ‖2Y ′ + ‖γ0w̄‖2L2(�). Since the dual norm ‖ · ‖Y ′
cannot be evaluated, this approach is not immediately feasible either. Therefore, for
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(Yh)h∈� being a second family of finite dimensional subspaces, now of Y , for h ∈ �

as a discrete approximation from Xh we consider

wh := argminw̄∈Xh
‖Bw̄ − f ‖2Y ′

h
+ ‖γ0w̄‖2L2(�). (4.1)

This minimal residual approach has been studied for general parabolic PDEs in, e.g.,
[2, 28, 29], where � can be a d-dimensional spatial domain for arbitrary d ≥ 1.

For parabolic differential operators with a possibly asymmetric spatial part, in our
setting caused by a non-zero drift function v, in [28, Thm. 3.1] it has been shown that
if Xh ⊂ Yh and

� := inf
h∈�

inf
0 �=w̄∈Xh

‖∂t w̄‖Y ′
h

‖∂t w̄‖Y ′
> 0, (4.2)

then
‖w − wh‖X � min

w̄∈Xh
‖w − w̄‖X , (4.3)

where the implied constant in (4.3) depends only on � and an upper bound for
‖v‖L∞(I×�), i.e., wh is a quasi-best approximation from Xh with respect to the norm
on X .

Remark 4.1 This quasi-optimality result has been demonstrated under the condition
that the spatial part of the parabolic differential operator is coercive on H1

0 (�)×H1
0 (�)

for a.e. t ∈ I , i.e.,

∫

D
η′η′ − v(t, ·)η′η dx � ‖η‖2H1(�)

(η ∈ H1
0 (�)),

which holds true when ∂xv ≤ 0 or ‖v‖L∞(I×�) sup0 �=η∈H1
0 (�)

‖η‖L2(�)

‖η′‖L2(�)
< 1, but which

might be violated otherwise.
Although this coercivity conditionmight not be necessary, it can always be enforced

by consideringwλ(t, ·) := w(t, ·)e−λt , fλ(t, ·) := f (t, ·)e−λt instead ofw and f with
λ sufficiently large, see also the proof of Proposition 3.1. By approximating wλ by
the minimal residual method, and by multiplying the obtained approximation by eλt ,
an approximation for w is obtained. Since qualitatively the transformations with e±λt

do not affect the smoothness of solution or right-hand side, for convenience in the
following we pretend that coercivity holds true for (3.3).

As in [28, 29], we equip Yh in (4.1) with the energy norm

‖z‖2Y := (Asz)(z) (z ∈ Yh),

where

(Asz)(z̄) :=
∫

I

∫

D
∂x z(t, x)∂x z̄(t, x) − v(t, x)

2
(∂x z(t, x)z̄(t, x) + z(t, x)∂x z̄(t, x)) dx dt
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denotes the symmetric part of the spatial differential operator. Equipping Yh and Xh

with bases�h = {φh
i } and�h = {ψh

j }, respectively, and denoting bywh the represen-

tation of the minimizer wh with respect to �h , wh is found as the second component
of the solution of

[
Ah
s Bh

Bh�
Ch

][
μh

wh

]

=
[
f h

0

]

, (4.4)

where (Ah
s )i j := (Asφ

h
j )(φ

h
i ), Bh

i j := (Bψh
j )(φ

h
i ), Ch

i j := ∫D ψh
j (0, x)ψ

h
i (0, x) dx ,

and f hi := f (φh
i ). The operator As can be replaced by any other spectrally equivalent

operator onYh without compromising the quasi-optimality result (4.3).We refer to [28,
29] for details.

Let P1 be the set of polynomials of degree one. Taking for n := 1/h ∈ N,

Vx,h := {η ∈ H1
0 (�) : η|((i−1)h,ih) ∈ P1 for i = 1, . . . , n

}
,

Vt,h := {ζ ∈ H1(I ) : ζ |((i−1)hT ,ihT ) ∈ P1 for i = 1, . . . , n
}
,

Xh := Vt,h ⊗ Vx,h, (4.5)

it is known, cf. [29, Sect. 4], that condition (4.2) is satisfied for

Yh := {ζ ∈ L2(I ) : ζ |((i−1)hT ,ihT ) ∈ P1 for i = 1, . . . , n
}⊗ Vx,h, (4.6)

where obviously also Xh ⊂ Yh .
Applying this approach for f = (v − v0)∂xu(v0), in view of (4.3) the error of

the obtained approximation for e(v) with respect to the X -norm can be bounded by
the error of the best approximation from Xh . To bound the latter error we recall from
Theorem 3.1 that for v ∈ W 1∞(I × �) ∩ L∞(I ;W 2∞(�)), it holds that

e(v) ∈ (H1
0,{0}(I ) ⊗ H1

0 (�)
) ∩ (H2(I ) ⊗ H−1(�)

) ∩ (L2(I ) ⊗ H3(�)
)
.

With Qx,h , Qt,h denoting the L2(�)- or L2(I )-orthogonal projectors onto Vx,h or
Vt,h , respectively, Qt,h ⊗ Qx,h is a projector onto Xh . Writing

Id − Qt,h ⊗ Qx,h = (Id − Qt,h) ⊗ Qx,h + Id ⊗ (Id − Qx,h),

and using that

‖Id − Qx,h‖L(H1
0 (�)∩H2(�),H1

0 (�)) � h, ‖Qx,h‖L(H1
0 (�),H1

0 (�)) � 1,

‖Id − Qt,h‖L(H1(I ),L2(I )) � h, ‖Id‖L(L2(I ),L2(I )) = 1

by standard interpolation estimates and uniform H1-boundedness of these L2-
orthogonal projectors, see e.g. [5, §3], one infers that

‖Id − Qt,h ⊗ Qx,h‖L((L2(I )⊗(H1
0 (�)∩H2(�)))∩(H1(I )⊗H1

0 (�)),L2(I )⊗H1
0 (�)) � h.
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Similarly using that

‖Id − Qx,h‖L(L2(�),H−1(�)) = ‖Id − Qx,h‖L(H1
0 (�),L2(�)) � h,

‖Qx,h‖L(H−1(�),H−1(�)) = ‖Qx,h‖L(H1
0 (�),H1

0 (�)) � 1,

‖Id − Qt,h‖L(H2(I ),H1(I )) � h, ‖Id‖L(H1(I ),H1(I )) = 1,

one infers that

‖Id − Qt,h ⊗ Qx,h‖L((H1(I )⊗L2(�))∩(H2(I )⊗H−1(�)),H1(I )⊗H−1(�)) � h.

Our findings are summarized in the following theorem.

Theorem 4.1 For v ∈ W 1∞(I × �) ∩ L∞(I ;W 2∞(�)) and Xh, Yh as defined in (4.5)
and (4.6), the numerical approximation eh = eh(v) ∈ Xh to e = e(v) obtained by the
application of the minimal residual method to (3.1)1 satisfies

‖e − eh‖X � h.

Notice that for this space Xh of continuous piecewise bilinears, this linear decay
of the error ‖e − eh‖X as function of h is generally the best that can be expected. In
view of the order of the space Xh , one may hope that ‖e − eh‖L2(I×�) is O(h2), but
on the basis of the smoothness demonstrated for e, even for inf ē∈Xh ‖e − ē‖L2(I×�)

this cannot be shown.

5 Interpolation for parametrized drift, boundaries, and final time

In this section we consider the case that v and T in (2.3) depend on a number of
parameters (ρ1, . . . , ρN ) ∈ [−1, 1]N , and that one is interested in the solution u(v)

to (2.3) for multiple values of these parameters. As explained in Section 3, in order
to find u(v) it suffices to obtain the solution e(v) to (3.1). Instead of simply solving
e(v) for each of the desired parameter values, under the provision that v and T depend
smoothly on the parameters, one may attempt to interpolate e(v) from its a priori
computed approximations for a carefully selected set of parameters in [−1, 1]N .

In order to be able to do so, first of all we need to get rid of the parameter dependence
of the domain I × � = (0, T ) × (0, 1). With Î := (0, 1), the function û on Î × �

defined by û(t, x) := u(tT , x) solves

⎧
⎪⎨

⎪⎩

∂t û(t, x) = T [∂2x û(t, x) + v̂(t, x)∂x û(t, x)] (t, x) ∈ Î × D,

û(t, 0) = 1, û(t, 1) = 0 t ∈ Î ,

û(0, x) = 0 x ∈ D,

(5.1)

1 If necessary taking into account the transformations discussed in Remark 4.1.
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where analogously v̂(t, x) := v(tT , x). Denoting this û as û(v̂, T ), the difference

ê = ê(v̂, T ) := û(v̂, T ) − û(v0, T ) : (t, x) �→ e(tT , x)

solves

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t ê(t, x) = T [∂2x ê(t, x) + v̂(t, x)∂x ê(t, x)]
+ T (v̂(t, x) − v0)∂x û(v0, T ) (t, x) ∈ Î × �,

ê(t, 0) = 0, ê(t, 1) = 0 t ∈ Î ,

ê(0, x) = 0 x ∈ �.

(5.2)

By simply replacing I = (0, T ) by Î = (0, 1) and in particular X as well as Y by

X̂ := L2( Î ; H1
0 (�)) ∩ H1( Î ; H−1(�)), Ŷ := L2( Î ; H1

0 (�)),

in a number of places, it is clear that the results that we obtained about the smoothness
of e and its numerical approximation eh by the minimal residual method apply equally
well to ê and its minimal residual approximation that we denote as êh .

Since the domain of ê is independent of parameters, we can apply the idea of
interpolation. One option is to perform a ‘full’ tensor product interpolation. In this
case, the number of interpolation points required for a fixed polynomial degree, i.e.,
the number of values of the parameters for which a numerical approximation for ê ∈ X̂
has to be computed, grows exponentially with the number N of parameters. As this is
undesirable, we instead apply a sparse tensor product interpolation. More specifically,
we choose the Smolyak construction, based on Clenshaw–Curtis abscissae in each
parameter direction, see [22]: For i ∈ N let Ii+1 denote the univariate interpolation
operator with abscissae cos j2−iπ , j = 0, . . . , 2i , onto the space of polynomials of
degree 2i , let I1 be the interpolation operator with abscissa 0 and let I0 := 0. Then,
for an integer q ≥ N , we apply the sparse interpolator

Iq :=
∑

{i∈N
N
0 : ∑N

n=1 in≤q}

N⊗

n=1

(Iin − Iin−1).

It is known that the resulting interpolation error in C([−1, 1]N ; X̂) (for arbitrary
Banach space X̂ ), equipped with ‖ · ‖L∞([−1,1]N ;X̂)

, decays subexponentially in the
number of interpolation points when ê as function of each of the parameters ρn has an
extension to a differentiablemapping on a neighbourhood� of [−1, 1] inC. For details
about this statement we refer to [22, Thm. 3.11]. [22] also mentions that the result
requires relatively large values of q. Thus, the authors additionally prove algebraic
convergence under the same assumptions but for arbitrary q [22, Thm. 3.10].

Instead of ê, we interpolate a numerical approximation êh , specifically the one
obtained by the minimal residual method described in Section 4. For the additional
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error we have

‖Iq(ê − êh)‖L∞([−1,1]N ;X̂)
≤ ‖Iq‖L(C([−1,1]N ),C([−1,1]N ))‖ê − êh‖L∞([−1,1]N ;X̂)

.

In [8, Sect. 5.3] it has been shown that the factor ‖Iq‖L(C([−1,1]N ),C([−1,1]N )), known

as the Lebesgue constant, is bounded by (#{i ∈ N
N
0 : ∑N

n=1 in ≤ q})2, which is only
of polylogarithmic order as function of the number of interpolation points.

Concerning the factor ‖ê − êh‖L∞([−1,1]N ;X̂)
, in our derivation of Theorem 4.1

we have seen that for each parameter value (ρ1, . . . , ρN ) ∈ [−1, 1]N the expression
h−1‖ê − êh‖X̂ can be bounded by a constant multiple, only dependent on an upper

bound for ‖v̂‖L∞( Î×�)
and for the norm of ê in H1

0,{0}( Î ; H1
0 (�))∩H2( Î ; H−1(�))∩

L2( Î ; H2(�)). For uniformly bounded T and T−1, and v̂ that varies over a bounded set
inW 1∞( Î ×�)∩ L∞( Î ;W 2∞(�)), inspection of the estimates from Sect. 3 reveals that
the latter norm of ê is uniformly bounded. So assuming that these conditions on T , T−1

and v hold true for (ρ1, . . . , ρN ) ∈ [−1, 1]N , we have that ‖ê− êh‖L∞([−1,1]N ;X̂)
� h.

What remains is to establish the differentiability of the solution ê as function of
each of the parameters which is done in the following theorem.

Theorem 5.1 For an open [−1, 1] ⊂ � ⊂ C, let (v̂, T ) : � → C( Î ;W 1∞(�)) ×
(0,∞) be differentiable. For ρ ∈ � let ê(v̂(ρ), T (ρ)) ∈ X̂ be the solution to (5.2).
Then ρ �→ ê = ê(v̂(ρ), T (ρ)) : � → X̂ is differentiable.

Proof The proof is based on the fact that ê is the solution of a well-posed PDE with
coefficients and a forcing term that are differentiable functions of ρ.

Analogously to (3.4), denoting by L(v̂, T ) the map w �→ f defined by ∂tw =
T (∂2x + v̂∂x )w + f on Î × �, w(t, 0) = 0 = w(t, 1) (t ∈ Î ), and w(0, x) = 0
(x ∈ �), one has

ê(v̂(ρ), T (ρ)) = L(v̂(ρ), T (ρ))−1T (ρ)(v̂(ρ) − v0(ρ))∂x û(v0(ρ), T (ρ)), (5.3)

where v0(ρ) := v̂(ρ)(0, 0). Below we demonstrate that

ρ �→ T (ρ)(v̂(ρ) − v0(ρ)) : � → L∞( Î ;W 1∞(�)) is differentiable, (5.4)

ρ �→ û(v0(ρ), T (ρ)) : � → L2( Î × �) is differentiable, (5.5)

so that, from ∂x ∈ L(L2( Î × �), Ŷ ′) and L∞( Î ;W 1∞(�))-functions being pointwise
multipliers in L(Ŷ ′, Ŷ ′),

ρ �→ T (ρ)(v̂(ρ) − v0(ρ))∂x û(v0(ρ), T (ρ)) : � → Ŷ ′ is differentiable. (5.6)

We proceed below to show that

ρ �→ L(v̂(ρ), T (ρ))−1 : � → L(Ŷ ′, X̂) is differentiable. (5.7)

Together, (5.6) and (5.7) complete the proof.
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From ρ �→ v̂(ρ) : � → C( Î ;W 1∞(�)) being differentiable, it follows that
ρ �→ v0(ρ) : � → C is differentiable, which together with T : � → (0,∞) being
differentiable shows (5.4).

To show (5.7), we fix some arbitrary ρ0 ∈ �, abbreviate L := L(v̂(ρ), T (ρ)) as
well as L0 := L(v̂(ρ0), T (ρ0)) and write

L−1 = L−1
0 + L−1

0 [L0 − L]L−1
0 + L−1{[L0 − L]L−1

0 }2.

This decomposition and the fact that L(v̂(ρ), T (ρ))−1 is bounded in L(Ŷ ′, X̂) for ρ

in a neighbourhood of ρ0 ([27, Thm. 5.1]) imply that it suffices to show that for some
K (ρ0) ∈ L(C,L(X̂ , Ŷ ′)),

L(v̂(ρ0), T (ρ0))− L(v̂(ρ), T (ρ)) = K (ρ0)(ρ −ρ0)+o(ρ −ρ0) in L(X̂ , Ŷ ′). (5.8)

We have

L(v̂(ρ0), T (ρ0)) − L(v̂(ρ), T (ρ))

= [T (ρ) − T (ρ0)]∂2x + [(T (ρ) − T (ρ0))v̂(ρ) + T (ρ0)(v̂(ρ) − v̂(ρ0))]∂x .

From T (ρ)−T (ρ0) = DT (ρ0)(ρ−ρ0)+o(ρ−ρ0), v̂(ρ)−v̂(ρ0) = Dv̂(ρ0)(ρ−ρ0)+
o(ρ −ρ0) in C(I 1,W 1∞(�)) ↪→ L∞( Î ×�), ∂2x ∈ L(X̂ , Ŷ ′), ∂x ∈ L(X̂ , L2( Î ×�)),
L∞( Î × �)-functions being pointwise multipliers in L(L2( Î × �), L2( Î × �)), and
L2( Î × �) ↪→ Ŷ ′, one concludes (5.8), and so (5.7).

To show (5.5), i.e., differentiability ofρ �→ û(v0(ρ), T (ρ)), we repeat the argument
that led to (5.3) to obtain

û(v0(ρ), T (ρ)) = û(0, T (ρ)) + û(v0(ρ), T (ρ)) − û(0, T (ρ))

= û(0, T (ρ)) + T (ρ)v0(ρ)L(v0(ρ), T (ρ))−1∂x û(0, T (ρ)),

and show that

ρ �→ û(0, T (ρ)) : � �→ L2( Î × �) is differentiable. (5.9)

Then ρ �→ ∂x û(0, T (ρ)) : � �→ Ŷ ′ is differentiable, and from both ρ �→ T (ρ)v0(ρ) :
� → C and ρ �→ L(v0(ρ), T (ρ))−1 : � → L(Ŷ ′, X̂) being differentiable one infers
(5.5).

To show (5.9), we apply our approach for the third time. Picking some ρ̄ ∈ �, we
write

û(0, T (ρ)) = û(0, T (ρ̄)) + (T (ρ̄) − T (ρ))L(0, T (ρ))−1∂2x û(0, T (ρ̄)).

Knowing that ∂2x û(0, T (ρ̄)) ∈ Ŷ ′, and ρ �→ L(0, T (ρ))−1 : � → L(Ŷ ′, X̂) and
ρ �→ T (ρ) : � → C are differentiable, the proof of (5.9) and thus of the theorem is
completed. ��
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6 Numerical results

We consider three relevant examples of the form (1.3) (or its equivalent reformu-
lation (2.1)) with σ = 1 from the literature. We transform the solution ũ of (2.1),
which might live on a time-dependent spatial domain, to u, which satisfies (2.3) on
the domain (0, T ) × (0, 1). In each example the resulting drift function v as well as
the end time point T depend on an up to N = 5 dimensional parameter ρ ∈ [−1, 1]N .

As u(v(ρ)(0, 0), T (ρ)) can be computed efficiently as a truncated series, it suffices
to consider the difference

e(v(ρ), T (ρ)) = u(v(ρ), T (ρ)) − u(v(ρ)(0, 0), T (ρ)),

which satisfies equation (3.1) and is provably smoother than u (Theorem 3.1).
Thinking of a multi-query setting, instead of approximating this difference for each

individual parameter value of interest we want to use (sparse) interpolation in the
parameter domain [−1, 1]N . To that end, defining ê(t, x) := e(tT (ρ), x), we get
rid of the parameter-dependent domain (0, T (ρ))×� on which e lives. This function
ê(t, x) satisfies the parabolic problemequation (5.2) on the space-time domain Î×� =
(0, 1)2 with forcing term

w̄ �→
∫ 1

0

∫

D
(v̂(t, x) − v0)∂x û(v0)(t, x)w̄(t, x) dx dt

=
∫ 1

0

∫

D
û(v0)(t, x)

(− ∂x v̂(t, x)w̄(t, x) − (v̂(t, x) − v0)∂x w̄(t, x)
)
dx dt

for all w̄ ∈ X̂ = L2( Î ; H1
0 (�)) ∩ H1( Î ; H−1(�)), and v0 := v(ρ)(0, 0) and corre-

sponding û(v0) solving (5.1) with v̂ = v0.
For all sparse interpolation points, by applying the minimal residual method from

Section 4we approximate ê by the continuous piecewise affine function êh on auniform
tensor mesh with mesh-size h, where û(v0) inside the forcing term can be efficiently
approximated at high accuracy as a truncated series.

Finally, for all parameter values ρ of interest, we apply the sparse tensor product
interpolation analyzed in Section 5 giving rise to an overall error

‖ê − Iq êh‖X̂ ≤ ‖ê − êh‖X̂ + ‖êh − Iq êh‖X̂ ≈ ‖êh/2 − êh‖X̂ + ‖êh − Iq êh‖X̂
with q the parameter that steers the accuracy of the sparse interpolation. For each of
the considered three examples, we compute the latter two errors for different h and q
and parameter test set

ρ ∈ {−1,−0.5, 0.5, 1}N . (6.1)

By Theorem 4.1, we expect ‖êh/2 − êh‖X̂ = O(h) for the first term. Section 5
suggests subexponential convergence of the second term ‖êh − Iq êh‖X̂ as function
of the number of interpolation points (this was shown for ‖ê − Iq ê‖X̂ ). However, we
already mentioned there that subexponential convergence is only observed for very
high q and in practice one should rather expect algebraic convergence.
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Notice that ‖ · ‖X̂ involves a negative order Sobolev norm. Thus, we compute an

equivalent version of ‖ · ‖X̂ for functions in the discrete trial space w̄ ∈ X̂h ⊂ X̂

(similarly for w̄ ∈ X̂h/2) (see [28, Proof of Thm. 3.1])

‖w̄‖2
X̂

� (w̄h)�(Bh)�(Ah)−1Bhw̄h + (w̄h)�Chw̄h . (6.2)

Here, w̄h is the coefficient vector of w̄ in the standard nodal basis �h = {ψh
i },

Bh and Ch are defined as in (4.4) with the standard nodal basis �h = {φh
i }, and

Ah
i j := ∫I

∫

�
∂xφ

h
j (t, x)∂xφ

h
i (t, x) dx dt .

6.1 Time-dependent hyperbolic drift function

As in [9, 19], we consider

μ(t, x) := μ0 + μ1
t

t + t0

from Section 1 with parameters μ0, μ1 ∈ R and t0 > 0. The left and right boundary
are given as

α(t) := 0 and β(t) := β0

with parameter β0 > 0. Following [9, 19], we particularly consider the following
practical ranges: μ0 ∈ [−1.97,−1.64], μ1 ∈ [−2.31,−0.99], t0 ∈ [0.13, 0.40],
β0 ∈ [1.38, 2.26], and τ ∈ [0.1, 2.5] for the end-time point. We have N = 5 different
parameters on which ṽ and thus v depend. After rescaling, the parameter space hence
has the form [−1, 1]5.

In Figure 1, we plot the maximal error êh/2 − êh ≈ ê − êh measured in the (equiv-
alent) X̂ -norm (6.2) over the test set (6.1) for different values of h. Figure 2 depicts
the maximal interpolation error êh − Iq êh over the test set (6.1) for different values
of h and q.

6.2 Space-dependent linear drift function

As in [26], we consider

μ(t, x) := μ0 + μ1(β0 − x)

from Section 1 with parameters β0 > 0 and μ0, μ1 ∈ R. The left and right boundary
are again given as

α(t) := 0 and β(t) := β0.

Motivated by [21, 26], we particularly consider the following practical ranges: μ0 ∈
[−2, 2], μ1 ∈ [−4, 4], and β0 ∈ [0.5, 2], and choose the end-time point as τ := 2.5.
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Fig. 1 Maximal error êh/2(v̂(ρ)) − êh(v̂(ρ)) measured in (equivalent) X̂ -norm over all ρ ∈
{−1,−0.5, 0, 0.5, 1}5 for time-dependent hyperbolic drift function from Sect. 6.1

Fig. 2 Maximal interpolation error êh(v̂(ρ)) − (Iq êh(v̂(·)))(ρ) for various choices of h measured in

(equivalent) X̂ -norm over all ρ ∈ {−1,−0.5, 0, 0.5, 1}5 for time-dependent hyperbolic drift function from
Sect. 6.1

We have N = 3 different parameters on which ṽ and thus v depend. After rescaling,
the parameter space hence has the form [−1, 1]3.

In Figure 3, we plot the maximal error êh/2 − êh ≈ ê − êh measured in the (equiv-
alent) X̂ -norm (6.2) over the test set (6.1). Figure 4 depicts the maximal interpolation
error êh − Iq êh over the test set (6.1) for different values of h and q.
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Fig. 3 Maximal error êh/2(v̂(ρ)) − êh(v̂(ρ)) measured in (equivalent) X̂ -norm over all ρ ∈
{−1,−0.5, 0, 0.5, 1}3 for space-dependent linear drift function from Sect. 6.2

Fig. 4 Maximal interpolation error êh(v̂(ρ))−(Iq êh(v̂(·)))(ρ)with h = 2−1, . . . , 2−8 measured in (equiv-

alent) X̂ -norm over all ρ ∈ {−1,−0.5, 0, 0.5, 1}3 for space-dependent linear drift function from Sect. 6.2

6.3 Constant drift function and time-dependent linear spatial domain

We consider a constant drift function

μ(t, x) := μ0
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Fig. 5 An approximation of solution ê to (5.2) using the minimal residual method

Fig. 6 An approximation of the solution û to (5.1) obtained by adding û(v0, T ) to ê

with parameter μ0 ∈ R. As in [13] (see also Example 2.1), we choose the left and
right boundary as

α(t) := β0
t

2T0
and β(t) := β0

(
1 − t

2T0

)

with parameters β0, T0 > 0. Recall from Example 2.1 that

θ(t) = β2
0 (T0 − 2T̃ )2t

T 2
0 − 2β2

0 (T0 − 2T̃ )t
, t ∈ [0, T )
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Fig. 7 An approximation of the solution ũ to (2.1) obtained by transforming the approximation of û back
to the original domain

Fig. 8 Maximal error êh/2(v̂(ρ), T (ρ)) − êh(v̂(ρ), T (ρ)) measured in (equivalent) X̂ -norm over all ρ ∈
{−1,−0.5, 0, 0.5, 1}4 for constant drift function with time-dependent linear spatial domain from Sect. 6.3

with T = θ−1(T̃ ) = T0 T̃
β2
0 (T0−2T̃ )

. Following [13],we particularly consider the following

practical ranges: μ0 ∈ [−5.86, 0], β0 ∈ [0.56, 3.93], T0 ∈ [3, 20], and τ ∈ [0.1, 2.5]
for the end-time point. We have N = 4 different parameters on which ṽ and thus v

depend. After rescaling, the parameter space hence has the form [−1, 1]4. Figures 5, 6,
and 7 show approximations of the solution ê to (5.2), the solution û to (5.1), and the
solution ũ to the original problem (2.1), with parameter values μ0 = 0, β0 = 3.93,
T0 = 3, and τ = 2.5. In Figure 8, we plot the maximal error êh/2 − êh ≈ ê − êh
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Fig. 9 Maximal interpolation error êh(v̂(ρ), T (ρ)) − (Iq êh(v̂(·), T (·)))(ρ) for various choices of h

measured in (equivalent) X̂ -norm over all ρ ∈ {−1,−0.5, 0, 0.5, 1}4 for constant drift function with
time-dependent linear spatial domain from Sect. 6.3

measured in the (equivalent) X̂ -norm (6.2) over the test set (6.1). Figure 9 depicts the
maximal interpolation error êh − Iq êh over the test set (6.1) for different values of h
and q.

7 Conclusion

We have developed a numerical solution method for solving the Fokker–Planck equa-
tion on a one-dimensional spatial domain and with a discontinuity between initial and
boundary data and time-dependent boundaries.We first transformed the equation to an
equation on a rectangular time-space domain. We then demonstrated that the solution
of a corresponding equation with a suitable constant drift function, whose solution is
explicitly available as a fast converging series expansion, captures the main singularity
present in the solution for a variable drift function. The equation for the difference
of both these solutions, which is thus more regular than both terms, is solved with a
minimal residual method. This method is known to give a quasi-best approximation
from the selected trial space.

Finally, in order to efficiently solve Fokker–Planck equations that depend on mul-
tiple parameters, we demonstrate that the solution is a holomorphic function of these
parameters. Consequently, a sparse tensor product interpolation method can be shown
to converge at a subexponentional rate as function of the number of interpolation
points. In one test example, this interpolation method works very satisfactory, but the
results are less convincing in two other cases. We envisage that in those cases better
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results can be obtained by an adaptive sparse interpolation method as the one proposed
in [6].
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