76 research outputs found

    The Host Galaxy and Optical Light Curve of the Gamma-Ray Burst GRB 980703

    Get PDF
    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V_gal = 23.00 +/- 0.10, (V-R)_gal = 0.43 +/- 0.13, and a centre that is approximately 0.2 mag bluer than the outer regions of the galaxy. The galaxy has a star-formation rate of 8-13 M_sun/yr, assuming no extinction in the host. We find that the galaxy is best fit by a Sersic R^(1/n) profile with n ~= 1.0 and a half-light radius of 0.13 arcsec (= 0.72/h_100 proper kpc). This corresponds to an exponential disk with a scale radius of 0.22 arcsec (= 1.21/h_100 proper kpc). Subtracting a fit with elliptical isophotes leaves large residuals, which suggests that the host galaxy has a somewhat irregular morphology, but we are unable to connect the location of GRB 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power-law decay having a slope of alpha = -1.37 +/- 0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying Type Ic supernova like SN1998bw, or a dust echo, but such contributions cannot be securely established.Comment: 9 pages, 5 figures, LaTeX using A&A Document Class v4.05, to appear in A&

    Spitzer Space Telescope observations of magnetic cataclysmic variables: possibilities for the presence of dust in polars

    Get PDF
    We present Spitzer Space Telescope photometry of six short-period polars, EF Eri, V347 Pav, VV Pup, V834 Cen, GG Leo, and MR Ser. We have combined the Spitzer Infrared Array Camera (3.6 -8.0 microns) data with the 2MASS J, H, K_s photometry to construct the spectral energy distributions of these systems from the near- to mid-IR (1.235 - 8 microns). We find that five out of the six polars have flux densities in the mid-IR that are substantially in excess of the values expected from the stellar components alone. We have modeled the observed SEDs with a combination of contributions from the white dwarf, secondary star, and either cyclotron emission or a cool, circumbinary dust disk to fill in the long-wavelength excess. We find that a circumbinary dust disk is the most likely cause of the 8 micron excess in all cases, but we have been unable to rule out the specific (but unlikely) case of completely optically thin cyclotron emission as the source of the observed 8 micron flux density. While both model components can generate enough flux at 8 microns, neither dust nor cyclotron emission alone can match the excess above the stellar components at all wavelengths. A model combining both cyclotron and dust contributions, possibly with some accretion-generated flux in the near-IR, is probably required, but our observed SEDs are not sufficiently well-sampled to constrain such a complicated model. If the 8 micron flux density is caused by the presence of a circumbinary dust disk, then our estimates of the masses of these disks are many orders of magnitude below the mass required to affect CV evolution.Comment: 58 pages, 14 figures, ApJ accepte

    Optical and near-infrared observations of the GRB020405 afterglow

    Get PDF
    (Abridged) We report on observations of the optical and NIR afterglow of GRB020405. Ground-based optical observations started about 1 day after the GRB and spanned a period of ~10 days; archival HST data extended the coverage up to 70 days after the GRB. We report the first detection of the afterglow in NIR bands. The detection of emission lines in the optical spectrum indicates that the GRB is located at z = 0.691. Absorptions are also detected at z = 0.691 and at z = 0.472. The latter system is likely caused by clouds in a galaxy located 2 arcsec southwest of the GRB host. Hence, for the first time, the galaxy responsible for an intervening absorption system in the spectrum of a GRB afterglow is identified. Optical and NIR photometry indicates that the decay in all bands follows a single power law of index alpha = 1.54. The late-epoch VLT and HST points lie above the extrapolation of this power law, so that a plateau is apparent in the VRIJ light curves at 10-20 days after the GRB. The light curves at epochs later than day ~20 after the GRB are consistent with a power-law decay with index alphaprime = 1.85. We suggest that this deviation can be modeled with a SN having the same temporal profile as SN2002ap, but 1.3 mag brighter at peak, and located at the GRB redshift. Alternatively, a shock re-energization may be responsible for the rebrightening. A polarimetric R-band measurement shows that the afterglow is polarized, with P = 1.5 % and theta = 172 degrees. Optical-NIR spectral flux distributions show a change of slope across the J band which we interpret as due to the presence of nu_c. The analysis of the multiwavelength spectrum within the fireball model suggests that a population of relativistic electrons produces the optical-NIR emission via synchrotron in an adiabatically expanding blastwave, and the X-rays via IC.Comment: 17 pages, 10 figures, 4 tables, accepted for publication on A&A, main journa

    Late-epoch optical and near-infrared observations of the GRB000911 afterglow and its host galaxy

    Get PDF
    We present the results of an optical and near-infrared (NIR) monitoring campaign of the counterpart of Gamma-Ray Burst (GRB) 000911, located at redshift z=1.06, from 5 days to more than 13 months after explosion. Our extensive dataset is a factor of 2 larger and spans a time interval about 4 times longer than the ones considered previously for this GRB afterglow; this allows a more thorough analysis of its light curve and of the GRB host galaxy properties. The afterglow light curves show a single power-law temporal decline, modified at late times by light from a host galaxy with moderate intrinsic extinction, and possibly by an emerging supernova (SN). The afterglow evolution is interpreted within the classical "fireball" scenario as a weakly collimated adiabatic shock propagating in the interstellar medium. The presence of a SN light curve superimposed on the non-thermal afterglow emission is investigated: while in the optical bands no significant contribution to the total light is found from a SN, the NIR J-band data show an excess which is consistent with a SN as bright as the known hypernova SN1998bw. If the SN interpretation is true, this would be the farthest GRB-associated SN, as well as the farthest core-collapse SN, discovered to date. However, other possible explanations of this NIR excess are also investigated. Finally, we studied the photometric properties of the host, and found that it is likely to be a slightly reddened, subluminous, extreme starburst compact galaxy, with luminosity about 0.1 L*, an age of about 0.5 Gyr and a specific Star Formation Rate (SFR) of approximately 30 Msol yr-1 (L/L*)-1. This is the highest specific SFR value for a GRB host inferred from optical/NIR data.Comment: 13 pages, 6 figures, 3 tables. Accepted for publication in A&A, main journa

    The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    Get PDF
    Observations of the extraordinarily bright optical afterglow (OA) of GRB 991208 started 2.1 d after the event. The flux decay constant of the OA in the R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect, and after that it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB OA. A negative detection in several all-sky films taken simultaneously to the event implies either a previous additional break prior to 2 d after the occurrence of the GRB (as expected from the jet effect). The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events. Once the afterglow emission vanished, contribution of a bright underlying SN is found, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus given support to a massive star origin. The absolute magnitude is M_B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1 Mo/yr. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0) implying a cooling frequency below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 6 figures (Fig. 3 and Fig. 4 have been updated

    Circadian changes and sex-related differences in fetal heart rate parameters

    Get PDF
    BACKGROUND: Previous researchers have studied circadian changes in the fetal heart rate (FHR) on small sample sizes and in a strictly controlled environment. This study was undertaken to investigate these changes during the late second and third trimesters, using a portable fetal electrocardiogram recording device (Monica AN24) in pregnant women in home and hospital environments with unrestricted mobility. METHODS: This was a prospective cohort study of 54 pregnant women with uncomplicated singleton pregnancies between 25 and 40 weeks gestation. FHR recordings were made up to 16 h at home or in the hospital setting in the United Kingdom. FHR data over 90 min periods were averaged and the day (7:00 am-11:00 pm) and night (11:00 pm-7:00 am) data from the same individual were compared. Data were examined for evidence of sex-related differences. RESULTS: During the night, there was a significant reduction in basal heart rate (bFHR) and a significant increase in short term variation (STV) and long term variation (LTV) (P < 0.05). Basal FHR decreased (P < 0.002), whereas LTV increased (P = 0.014) with advancing gestation. Male fetuses showed greater day: night variation than females regardless of gestation (P = 0.014). There was a higher bFHR in fetuses monitored during the day in hospital (P = 0.04). CONCLUSION: This study demonstrates that there are sex-, environment and time-related differences in the FHR parameters measured. These differences may need to be considered taken when interpreting FHR data

    Pre-ALMA observations of GRBs in the mm/submm range

    Full text link
    GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this range crucial for constraining the models. Observations have been limited until now due to the low sensitivity of the observatories in this range. We present observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA. The catalogue of mm/submm observations collected here is the largest to date and is composed of 102 GRBs, of which 88 had afterglow observations, whereas the rest are host galaxy searches. With our programmes, we contributed with data of 11 GRBs and the discovery of 2 submm counterparts. In total, the full sample, including data from the literature, has 22 afterglow detections with redshift ranging from 0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak luminosities spanning 2.5 orders of magnitude, the most luminous reaching 10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at 0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of the distribution of peak flux densities of GRB afterglows, based on the current mm/submm sample. Observations in the mm/submm bands have been shown to be crucial for our understanding of the physics of GRBs, but have until now been limited by the sensitivity of the observatories. With the start of the operations at ALMA, the sensitivity will be increased by more than an order of magnitude. Our estimates predict that, once completed, ALMA will detect up to 98% of the afterglows if observed during the passage of the peak synchrotron emission.Comment: 23 pages, 14 figures, 5 tables (one big one!), Accepted for publication in A&A. Includes the first observation of a GRB afterglow with ALM

    Simulation With Learning Agents

    No full text
    We propose that learning agents (LAs) be incorporated into simulation environments in order to model the adaptive behavior of hunans. These LAs adapt to specific circumstances and events daring the simulation run. They would select tasks to be accomplished among a given set of tusks as the simulation progresses, or synthesize tasks for themselves based on their observations of the environment and on information they may receive from other agents. We investigate an approach in which agents are assigned goals when the simulation starts and then pursue these goals autonomously and adoptively. During the simulation, agents progressively improve their ability to accomplish their goals effectively and safely. Agents learn from their own observations and from the experience of other agents with whom they exchange information. Each LA starts with a given representation of the simulation environment from which it progressively constructs its own internal representation and uses it to make decisions. This paper describes how learning neural nemorks can support this approach and shows that goal-based learning may be used effectively used in this context. An example simulation is presented in \u27which agents represent manned vehicles; they are assigned the goal of traversing a dangerous metropolitan grid safely and rapidly using goal-based reinforcement learning with neural networks and compared to three other algorithms. © 2001 IEEE

    Analysis Of Graduate Students\' Personal Knowledge, Searching Proficiency And Data Base Use For Research

    No full text
    The focus of this study is the relationship between personal knowledge in a discipline and searching proficiency in that discipline and database search. Over a period of time 64 students solved problems in four discipline, education, library science, chemistry and biology (with and without assistance from a factual database in the relevant discipline). There was little evidence of any relationship between personal domain knowledge and searching proficiency such as search results, selection of search terms, improvement in selection of search terms over the course of the search, and efficiency). Search results were found to be related to database-assisted problem-solving performance. Analysis showed that personal knowledge has little relationship with searching proficiency, and that some aspects of searching proficiency are closely related to database assisted problem solving.Global Journal for Educational Research Vol. 6 (1&2) 2007: pp. 19-2

    Nonlinear optical properties of a semi-exponential quantum wells: Effect of high-frequency intense laser field

    No full text
    In this present work, the effect of non-resonant, mono-chromatic intense laser field (ILF) on the linear and nonlinear optical properties of a semi-exponential quantum well (SEQW) is investigated theoretically within the effective-mass and envelope wave function approach. The bound subband energy levels and their envelope wave functions of the structure are calculated by using the diagonalization method. The optical properties of the system are obtained by using the compact-density matrix approach. The obtained numerical results show that the applied ILF and structure parameters have a significant impact on the optical properties of these structures, such as the linear, third-order nonlinear and total absorption coefficients and relative refractive index changes. Furthermore, from the findings of this study, it has been concluded that the linear and nonlinear optical properties in a SEQW under the ILF can be tuned by changing structure parameters, such as the effective range and depth of the system
    corecore