143 research outputs found

    Above and belowground community strategies respond to different global change drivers

    Get PDF
    Environmental changes alter the diversity and structure of communities. By shifting the range of species traits that will be successful under new conditions, environmental drivers can also dramatically impact ecosystem functioning and resilience. Above and belowground communities jointly regulate whole-ecosystem processes and responses to change, yet they are frequently studied separately. To determine whether these communities respond similarly to environmental changes, we measured taxonomic and trait-based responses of plant and soil microbial communities to four years of experimental warming and nitrogen deposition in a temperate grassland. Plant diversity responded strongly to N addition, whereas soil microbial communities responded primarily to warming, likely via an associated decrease in soil moisture. These above and belowground changes were associated with selection for more resource-conservative plant and microbe growth strategies, which reduced community functional diversity. Functional characteristics of plant and soil microbial communities were weakly correlated (P = 0.07) under control conditions, but not when above or belowground communities were altered by either global change driver. These results highlight the potential for global change drivers operating simultaneously to have asynchronous impacts on above and belowground components of ecosystems. Assessment of a single ecosystem component may therefore greatly underestimate the whole-system impact of global environmental changes

    Reshaping our understanding of species’ roles in landscape-scale networks

    Get PDF
    Data associate with Ecology Letters manuscript number: ELE-01021-2018.R2; Hackett et al. Reshaping our understanding of species’ roles in landscape-scale networks<div><br></div><div>See READ ME text file for specific detail</div

    A common framework for identifying linkage rules across different types of interactions

    Get PDF
    Species interactions, ranging from antagonisms to mutualisms, form the architecture of biodiversity and determine ecosystem functioning. Understanding the rules responsible for who interacts with whom, as well as the functional consequences of these interspecific interactions, is central to predict community dynamics and stability. Species traits sensu lato may affect different ecological processes by determining species interactions through a two-step process. First, ecological and life-history traits govern species distributions and abundance, and hence determine species co-occurrence and the potential for species to interact. Secondly, morphological or physiological traits between co-occurring potential interaction partners should match for the realization of an interaction. Here, we review recent advances on predicting interactions from species co-occurrence and develop a probabilistic model for inferring trait matching. The models proposed here integrate both neutral and trait-matching constraints, while using only information about known interactions, thereby overcoming problems originating from undersampling of rare interactions (i.e. missing links). They can easily accommodate qualitative or quantitative data and can incorporate trait variation within species, such as values that vary along developmental stages or environmental gradients. We use three case studies to show that the proposed models can detect strong trait matching (e.g. predator‿prey system), relaxed trait matching (e.g. herbivore‿plant system) and barrier trait matching (e.g. plant‿pollinator systems). Only by elucidating which species traits are important in each process (i.e. in determining interaction establishment and frequency), we can advance in explaining how species interact and the consequences of these interactions for ecosystem functioning. A lay summary is available for this articlePeer Reviewe

    Non-random food-web assembly at habitat edges increases connectivity and functional redundancy

    Get PDF
    Abstract Habitat fragmentation dramatically alters the spatial configuration of landscapes, with the creation of artificial edges affecting community structure and dynamics. Despite this, it is not known how the different food webs in adjacent habitats assemble at their boundaries. Here we demonstrate that the composition and structure of herbivore-parasitoid food webs across edges between native and plantation forests are not randomly assembled from those of the adjacent communities. Rather, elevated proportions of abundant, interaction-generalist parasitoid species at habitat edges allowed considerable interaction rewiring, which led to higher linkage density and less modular networks, with higher parasitoid functional redundancy. This was in spite of high overlap in host composition between edges and interiors. We also provide testable hypotheses for how food webs may assemble between habitats with lower species overlap. In an increasingly fragmented world, non-random assembly of food webs at edges may increasingly affect community dynamics at the landscape level

    Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales

    Get PDF
    Volcanic eruptions are unsteady multiphase phenomena, which encompass many inter-related processes across the whole range of scales from molecular and microscopic to macroscopic, synoptic and global. We provide an overview of recent advances in numerical modelling of volcanic effects, from conduit and eruption column processes to those on the Earth s climate. Conduit flow models examine ascent dynamics and multiphase processes like fragmentation, chemical reactions and mass transfer below the Earth surface. Other models simulate atmospheric dispersal of the erupted gas-particle mixture, focusing on rapid processes occurring in the jet, the lower convective regions, and pyroclastic density currents. The ascending eruption column and intrusive gravity current generated by it, as well as sedimentation and ash dispersal from those flows in the immediate environment of the volcano are examined with modular and generic models. These apply simplifications to the equations describing the system depending on the specific focus of scrutiny. The atmospheric dispersion of volcanic clouds is simulated by ash tracking models. These are inadequate for the first hours of spreading in many cases but focus on long-range prediction of ash location to prevent hazardous aircraft - ash encounters. The climate impact is investigated with global models. All processes and effects of explosive eruptions cannot be simulated by a single model, due to the complexity and hugely contrasting spatial and temporal scales involved. There is now the opportunity to establish a closer integration between different models and to develop the first comprehensive description of explosive eruptions and of their effects on the ground, in the atmosphere, and on the global climate

    Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems

    Get PDF
    Numerous recent studies have tested the effects of plant, pollinator, and predator diversity on primary productivity, pollination, and consumption, respectively. Many have shown a positive relationship, particularly in controlled experiments, but variability in results has emphasized the context-dependency of these relationships. Complementary resource use may lead to a positive relationship between diversity and these processes, but only when a diverse array of niches is available to be partitioned among species. Therefore, the slope of the diversity-function relationship may change across differing levels of heterogeneity, but empirical evaluations of this pattern are lacking. Here we examine three important functions/properties in different real world (i.e., nonexperimental) ecosystems: plant biomass in German grasslands, parasitism rates across five habitat types in coastal Ecuador, and coffee pollination in agroforestry systems in Indonesia. We use general linear and structural equation modeling to demonstrate that the effect of diversity on these processes is context dependent, such that the slope of this relationship increases in environments where limiting resources (soil nutrients, host insects, and coffee flowers, respectively) are spatially heterogeneous. These real world patterns, combined with previous experiments, suggest that biodiversity may have its greatest impact on the functioning of diverse, naturally heterogeneous ecosystems

    Climatic and local stressor interactions threaten tropical forests and coral reefs

    Get PDF
    Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions'

    Social-ecological connections across land, water, and sea demand a reprioritization of environmental management

    Get PDF
    Despite many sectors of society striving for sustainability in environmental management, humans often fail to identify and act on the connections and processes responsible for social-ecological tipping points. Part of the problem is the fracturing of environmental management and social-ecological research into ecosystem domains (land, freshwater, and sea), each with different scales and resolution of data acquisition and distinct management approaches. We present a perspective on the social-ecological connections across ecosystem domains that emphasize the need for management reprioritization to effectively connect these domains. We identify critical nexus points related to the drivers of tipping points, scales of governance, and the spatial and temporal dimensions of social-ecological processes. We combine real-world examples and a simple dynamic model to illustrate the implications of slow management responses to environmental impacts that traverse ecosystem domains. We end with guidance on management and research opportunities that arise from this cross-domain lens to foster greater opportunity to achieve environmental and sustainability goals.Peer reviewe
    corecore