38 research outputs found

    Estimation of the nonlinear dependence of the indications of a fiber Bragg grating on temperature and strain from experimental data

    Get PDF
    The readings of the Bragg grating are determined based on the optical radiation reflected from it. A quantitative characteristic of this radiation is the wavelength at which the maximum power of the optical signal is achieved. This characteristic is called the central wavelength of the grating. The central wavelength shift depends on temperature and strain. As a rule, a linear approximation of this dependence is used. However, from the available literature it is known that, the grating wavelength shift demonstrates a strong nonlinear dependence on temperature at 5<T<200K and a weak quadratic dependence close to room temperature. Thus far, the authors have not found studies that consider all terms in the quadratic expansion of the central wavelength of the Bragg grating as a function of temperature and strain at near-room temperatures. Our work is intended to fill this gap. The article describes an experiment in which an optical fiber with Bragg grating was subjected to loading using three different weights. A step-wise temperature change from 5 to 100 0С was realized for each weight. Based on these data, all terms of the quadratic expansion of the desired function are determined. The contribution of each term is estimated

    Investigation of the effect of cracks on the vibration processes in reinforced concrete structures

    Get PDF
    The validity of the mathematical model describing the propagation of vibrations in the reinforced concrete structures (RC structures) was verified by comparing the experimental and numerical data. The proposed model allowed us to perform numerical experiments aimed at comparing vibrorecords obtained for the structure without defects and the structure with typical fracture caused by crack formation. Based on the results of comparison, an informative diagnostic parameter was proposed. This parameter makes it possible to control the nucleation and growth of cracks in a RC structure

    Control of surface subsidence based on building deformation monitoring data

    Get PDF
    This paper presents an approach to the estimation of ground surface distortion based on the data from the online deformation monitoring systems mounted on the foundations of the group of buildings located in the area of ground instability. The local monitoring systems provide control of building foundation settlements using the hydrostatic level measurement technique. These data are used to calculate the inclination foundation angles which reflect the distortion of the earth's surface at local points. The hydrostatic level system allows one to perform measurements with the desired space and time sampling and to obtain a quite detailed picture of the changes in the deformation parameters over time. A set of such local monitoring units forms a distributed system that allows monitoring the state of the earth's surface over a large area. Here, we present long-term results obtained using such system located in the city area above mining. The evolution of the inclination angles of the group of overlying buildings is shown. We discuss the validity of this approach, and estimate the accuracy of the measuring method and the factors that influence it. Finally, we assess the possibility of making short-term predictions of deformation processes inside the rock massif

    Zinc induces temperature-dependent reversible self-assembly of Tau

    Get PDF
    Tau is an intrinsically disordered microtubule-associated protein that is implicated in several neurodegenerative disorders called tauopathies. In these diseases, Tau is found in the form of intracellular inclusions that consist of aggregated paired helical filaments (PHFs) in neurons. Given the importance of this irreversible PHF formation in neurodegenerative disease, Tau aggregation has been extensively studied. Several different factors, such as mutations or post translational modifications, have been shown to influence the formation of late-stage non-reversible Tau aggregates. It was recently shown that zinc ions accelerated heparin-induced oligomerization of Tau constructs. Indeed, in vitro studies of PHFs have usually been performed in the presence of additional co-factors, such as heparin, in order to accelerate their formation. Using turbidimetry, we investigated the impact of zinc ions on Tau in the absence of heparin and found that zinc is able to induce a temperature-dependent reversible oligomerization of Tau. The obtained oligomers were not amyloid-like and dissociated instantly following zinc chelation or a temperature decrease. Finally, a combination of isothermal titration calorimetry and dynamic light scattering experiments showed zinc binding to a high-affinity binding site and three low-affinity sites on Tau, accompanied by a change in Tau folding. Altogether, our findings stress the importance of zinc in Tau oligomerization. This newly identified Zn-induced oligomerization mechanism may be a part of a pathway different of and concurrent to Tau aggregation cascade leading to PHF formation

    Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Get PDF
    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange

    Chemical abundance analysis of the Open Clusters Berkeley 32, NGC 752, Hyades and Praesepe

    Full text link
    Context. Open clusters are ideal test particles to study the chemical evolution of the Galactic disc. However the existing high-resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient at the moment. Aims. To increase the number of Galactic open clusters with high quality abundance determinations, and to gather all the literature determinations published so far. Methods. Using high-resolution (R~30000), high-quality (S/N$>60 per pixel), we obtained spectra for twelve stars in four open clusters with the fiber spectrograph FOCES, at the 2.2 Calar Alto Telescope in Spain. We use the classical equivalent widths analysis to obtain accurate abundances of sixteen elements: Al, Ba, Ca, Co, Cr, Fe, La, Mg, Na, Nd, Ni, Sc, Si, Ti, V, Y. Oxygen abundances have been derived through spectral synthesis of the 6300 A forbidden line. Results. We provide the first determination of abundance ratios other than Fe for NGC 752 giants, and ratios in agreement with the literature for the Hyades, Praesepe and Be 32. We use a compilation of literature data to study Galactic trends of [Fe/H] and [alpha/Fe] with Galactocentric radius, age, and height above the Galactic plane. We find no significant trends, but some indication for a flattening of [Fe/H] at large Rgc, and for younger ages in the inner disc. We also found a possible decrease of [Fe/H] with |z| in the outer disc, and a weak increase of [alpha/Fe] with Rgc.Comment: 21 pages, Accepted for publication in A&A, Updated Table 1

    The 2MASS Redshift Survey - Description and Data Release

    Get PDF
    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby Universe. The 2 Micron All-Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available on-line. The 2MASS XSC contains nearly a million galaxies with Ks <= 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b|=5 deg for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby Universe. We selected a sample of 44,599 2MASS galaxies with Ks =5 deg (>= 8 deg towards the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously-obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly-complete sub-sample of 20,860 galaxies with Ks = 10 deg.Comment: Accepted for publication in The Astrophysical Journal Supplement Series. The 2MRS catalogs and a version of the paper with higher-resolution figures can be found at http://tdc-www.harvard.edu/2mrs

    Control of surface subsidence based on building deformation monitoring data

    No full text
    This paper presents an approach to the estimation of ground surface distortion based on the data from the online deformation monitoring systems mounted on the foundations of the group of buildings located in the area of ground instability. The local monitoring systems provide control of building foundation settlements using the hydrostatic level measurement technique. These data are used to calculate the inclination foundation angles which reflect the distortion of the earth's surface at local points. The hydrostatic level system allows one to perform measurements with the desired space and time sampling and to obtain a quite detailed picture of the changes in the deformation parameters over time. A set of such local monitoring units forms a distributed system that allows monitoring the state of the earth's surface over a large area. Here, we present long-term results obtained using such system located in the city area above mining. The evolution of the inclination angles of the group of overlying buildings is shown. We discuss the validity of this approach, and estimate the accuracy of the measuring method and the factors that influence it. Finally, we assess the possibility of making short-term predictions of deformation processes inside the rock massif

    Identification power line sections with increased electricity losses using sensors with Wi-Fi technology for data transmission

    No full text
    Modern highly mechanized and electrified agriculture places high demands on power supply reliability and uninterrupted work. To increase the reliability of power supply to agricultural consumers, in some cases, taking into account the configuration of electric distribution networks and the availability of responsible consumers, a conditionally closed ring network is created. Interruptions in power supply lead to downtime of agricultural production, a decrease in the volume of output, damage to the main technological equipment [1, 2]. In this regard, there is a need to make informed decisions on the choice of ways to increase the reliability of uninterrupted power supply due to the reservation of various elements of the power supply system, improving the organization of maintenance, and the operational diagnostics of faulty elements

    Zinc Induces Temperature-Dependent Reversible Self-Assembly of Tau

    No full text
    International audienceTau is an intrinsically disordered microtubule associated protein that is implicated in several neurodegenerative disorders called Tau opathies. In these diseases, Tau is found in the form of intracellular inclusions that consist of aggregated paired helical filaments (PHFs) in neurons. Given the importance of this irreversible PHF formation in neurodegenerative disease, Tau aggregation has been extensively studied. Several different factors, such as mutations or post translational modifications, have been shown to influence the formation of late stage non-reversible Tau aggregates. It was recently shown that zinc ions accelerated heparin induced oligomerization of Tau constructs. Indeed, in vitro studies of PHFs have usually been performed in the presence of additional co-factors, such as heparin, in order to accelerate their formation. Using turbidimetry, we investigated the impact of zinc ions on Tau in the absence of heparin and found that zinc is able to induce a temperature dependent reversible oligomerization of Tau. The obtained oligomers were not amyloid like, and dissociated instantly following zinc chelation or a temperature decrease. Finally, a combination of isothermal titration calorimetry and dynamic light scattering experiments showed zinc binding to a high affinity binding site and three low affinity sites on Tau, accompanied by a change in Tau folding. Altogether, our findings stress the importance of zinc in Tau oligomerization. This newly identified Zn-induced oligomerization mechanism may be a part of a pathway different of and concurrent to Tau aggregation cascade leading to PHF formation
    corecore