96 research outputs found

    Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing

    Get PDF
    West Nile virus (WNV) infection is an emerging mosquito-borne disease that can lead to severe neurological illness and currently has no available treatment or vaccine. Using microengraving, an integrated single-cell analysis method, we analyzed a cohort of subjects infected with WNV - recently infected and post-convalescent subjects - and efficiently identified four novel WNV neutralizing antibodies. We also assessed the humoral response to WNV on a single-cell and repertoire level by integrating next generation sequencing (NGS) into our analysis. The results from single-cell analysis indicate persistence of WNV-specific memory B cells and antibody-secreting cells in post-convalescent subjects. These cells exhibited class-switched antibody isotypes. Furthermore, the results suggest that the antibody response itself does not predict the clinical severity of the disease (asymptomatic or symptomatic). Using the nucleotide coding sequences for WNV-specific antibodies derived from single cells, we revealed the ontogeny of expanded WNV-specific clones in the repertoires of recently infected subjects through NGS and bioinformatic analysis. This analysis also indicated that the humoral response to WNV did not depend on an anamnestic response, due to an unlikely previous exposure to the virus. The innovative and integrative approach presented here to analyze the evolution of neutralizing antibodies from natural infection on a single-cell and repertoire level can also be applied to vaccine studies, and could potentially aid the development of therapeutic antibodies and our basic understanding of other infectious diseases

    Implantable Silk Composite Microneedles for Programmable Vaccine Release Kinetics and Enhanced Immunogenicity in Transcutaneous Immunization

    Get PDF
    Microneedle vaccines mimic several aspects of cutaneous pathogen invasion by targeting antigen to skin-resident dendritic cells and triggering local inflammatory responses in the skin, which are correlated with enhanced immune responses. Here, we tested whether control over vaccine delivery kinetics can enhance immunity through further mimicry of kinetic profiles present during natural acute infections. An approach for the fabrication of silk/poly(acrylic acid) (PAA) composite microneedles composed of a silk tip supported on a PAA base is reported. On brief application of microneedle patches to skin, the PAA bases rapidly dissolved to deliver a protein subunit vaccine bolus, while also implanting persistent silk hydrogel depots into the skin for a low-level sustained cutaneous vaccine release over 1–2 weeks. Use of this platform to deliver a model whole-protein vaccine with optimized release kinetics resulted in >10-fold increases in antigen-specific T-cell and humoral immune responses relative to traditional parenteral needle-based immunization.Ragon Institute of MGH, MIT and HarvardNational Institutes of Health (U.S.) (AI095109)United States. Dept. of Defense (Contract W911NF-13-D-0001)United States. Dept. of Defense (Contract W911NF-07-D0004

    On the routines of wild-type silk fibroin processing toward silk-inspired materials: a review

    Get PDF
    For years, silk fibroin of a domestic silkworm, Bombyx mori, has been recognized as a valuable material and extensively used. In the last decades, new application fields are emerging for this versatile material. Those final, specific applications of silk dictate the way it has been processed in industry and research. This review focuses on the description of various approaches for silk downstream processing in a laboratory scale, that fall within several categories. The detailed description of workflow possibilities from the naturally found material to a finally formulated product is presented. Considerable attention is given to (bio-) chemical approaches of silk fibroin transformation, particularly, to its enzyme-driven modifications. The focus of the current literature survey is exclusively on the methods applied in research and not industry

    Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus

    Get PDF
    Snakebite envenomings represent a neglected public health issue in many parts of the rural tropical world. Animal-derived antivenoms have existed for more than a hundred years and are effective in neutralizing snake venom toxins when timely administered. However, the low immunogenicity of many small but potent snake venom toxins represents a challenge for obtaining a balanced immune response against the medically relevant components of the venom. Here, we employ high-throughput sequencing of the immunoglobulin (Ig) transcriptome of mice immunized with a three-finger toxin and a phospholipase A2 from the venom of the Central American coral snake, Micrurus nigrocinctus. Although exploratory in nature, our indicate results showed that only low frequencies of mRNA encoding IgG isotypes, the most relevant isotype for therapeutic purposes, were present in splenocytes of five mice immunized with 6 doses of the two types of toxins over 90 days. Furthermore, analysis of Ig heavy chain transcripts showed that no particular combination of variable (V) and joining (J) gene segments had been selected in the immunization process, as would be expected after a strong humoral immune response to a single antigen. Combined with the titration of toxin-specific antibodies in the sera of immunized mice, these data support the low immunogenicity of three-finger toxins and phospholipases A2 found in M. nigrocinctus venoms, and highlight the need for future studies analyzing the complexity of antibody responses to toxins at the molecular level.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    The effect of hydrophobic patterning on micromolding of aqueous-derived silk structures

    No full text
    A novel micromolding approach was developed to process liquid biopolymers with high aqueous solvent contents (\u3e90% water). Specifically silk fibroin was cast into a well-defined scaffold-like structures for potential tissue engineering applications. A method was developed to pattern the hydrophilicity and hydrophobicity of the polydimethylsiloxane (PDMS) mold surfaces. The water based biopolymer solution could then be directly applied to the desired regions on the cast surface. The variations in degree of hydrophilicity and hydrophobicity on the PDMS surfaces were quantified through contact angle measurements and compared to the outcome of the molded silk structures. Through this method free-standing structures (vs. relief surface-patterning) could be fabricated. © 2008 Materials Research Society

    A New Toolbox for Assessing Single Cells

    No full text
    Unprecedented access to the biology of single cells is now feasible, enabled by recent technological advancements that allow us to manipulate and measure sparse samples and achieve a new level of resolution in space and time. This review focuses on advances in tools to study single cells for specific areas of biology. We examine both mature and nascent techniques to study single cells at the genomics, transcriptomics, and proteomics level. In addition, we provide an overview of tools that are well suited for following biological responses to defined perturbations with single-cell resolution. Techniques to analyze and manipulate single cells through soluble and chemical ligands, the microenvironment, and cell-cell interactions are provided. For each of these topics, we highlight the biological motivation, applications, methods, recent advances, and opportunities for improvement. The toolbox presented in this review can function as a starting point for the design of single-cell experiments. © 2014 by Annual Reviews
    corecore