281 research outputs found

    Considering innate immune responses in SARS-CoV-2 infection and COVID-19

    Get PDF
    During the COVID-19 pandemic, much of the media focus has been on adaptive immunity, particularly antibody levels and memory T cells. However, immunologists have been striving to decipher how SARS-CoV-2 infection impacts our first line of defence, namely the innate immune system. In early 2022, Program staff from the NIAID at the NIH organized a workshop focusing on the innate immune response to SARS-CoV-2 infection and during COVID-19, which was chaired by Ralph Baric, Jenny Ting and John Lambris. Following the meeting, Nature Reviews Immunology invited some of the organizers and speakers to share their thoughts on the key discussion points

    Ionizing radiation absorption of vascular surgeons during endovascular procedures

    Get PDF
    ObjectiveEndovascular procedures have become an integral part of a vascular surgeon’s practice. The exposure of surgeons to ionizing radiation and other safety issues have not been well studied. We investigated the radiation exposure of a team of vascular surgeons in an active endovascular unit and compared yearly dosages absorbed by various body parts among different surgeons. Patients’ radiation exposure was also assessed.MethodsThe radiation absorption of a team of vascular surgeons was prospectively monitored in a 12-month period. During each endovascular procedure, the effective body, eye, and hand radiation doses of all participating surgeons were measured by mini-thermoluminescent dosimeters (TLD) attached at the chest level under a lead apron, at the forehead at eye level, and at the hand. The type of procedure, fluoroscopy machine, fluoroscopy time, and personal and operating theatre radiation protection devices used in each procedure were also recorded. One TLD was attached to the patient’s body near the operative site to measure the patient’s dose. The yearly effective body, eye, and hand dose were compared with the safety limits of radiation for occupational exposure recommended by the International Commission on Radiation Protection (ICRP). The radiation absorption of various body parts per minute of fluoroscopy was compared among different surgeons.ResultsA total of 149 consecutive endovascular procedures were performed, including 30 endovascular aortic repairs (EVAR), 58 arteriograms with and without embolization (AGM), and 61 percutaneous transluminal angioplasty and stent (PTA/S) procedures. The cumulative fluoroscopy time was 1132 minutes. The median yearly effective body, eye, and hand dose for the surgeons were 0.20 mSv (range, 0.13 to 0.27 mSv), 0.19 mSv (range, 0.10 to 0.33 mSv) and 0.99 mSv (0.29 to 1.84 mSv) respectively, which were well below the safety limits of the ICRP. The mean body, eye, and hand dose of the chief surgeon per procedure were highest for EVAR. A significant discrepancy was observed for the average hand dose per minute of fluoroscopy among different surgeons. The mean radiation absorption of patients who underwent EVAR, AGM, and PTA/S was 12.7 mSv, 13.6 mSv, and 3.4 mSv, respectively.ConclusionWith current radiation protection practice, the radiation absorbed by vascular surgeons with a high endovascular workload did not exceed the safety limits recommended by ICRP. Variations in practice, however, can result in significant discrepancy of radiation absorption between surgeons

    How does the substrate affect the Raman and excited state spectra of a carbon nanotube?

    Full text link
    We study the optical properties of a single, semiconducting single-walled carbon nanotube (CNT) that is partially suspended across a trench and partially supported by a SiO2-substrate. By tuning the laser excitation energy across the E33 excitonic resonance of the suspended CNT segment, the scattering intensities of the principal Raman transitions, the radial breathing mode (RBM), the G-mode and the D-mode show strong resonance enhancement of up to three orders of magnitude. In the supported part of the CNT, despite a loss of Raman scattering intensity of up to two orders of magnitude, we recover the E33 excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak intensity ratio between G-band and D-band is highly sensitive to the presence of the substrate and varies by one order of magnitude, demonstrating the much higher defect density in the supported CNT segments. By comparing the E33 resonance spectra measured by Raman excitation spectroscopy and photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we observe that the peak energy in the PL excitation spectrum is red-shifted by 40 meV. This shift is associated with the energy difference between the localized exciton dominating the PL excitation spectrum and the free exciton giving rise to the Raman excitation spectrum. High-resolution Raman spectra reveal substrate-induced symmetry breaking, as evidenced by the appearance of additional peaks in the strongly broadened Raman G band. Laser-induced line shifts of RBM and G band measured on the suspended CNT segment are both linear as a function of the laser excitation power. Stokes/anti-Stokes measurements, however, reveal an increase of the G phonon population while the RBM phonon population is rather independent of the laser excitation power.Comment: Revised manuscript, 20 pages, 8 figure

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore