60 research outputs found

    Electronic, optical and thermal properties of the hexagonal and fcc Ge2Sb2Te5 chalcogenide from first-principle calculations

    Full text link
    We present a comprehensive computational study on the properties of face-centered cubic and hexagonal chalcogenide Ge2Sb2Te5. We calculate the electronic structure using density functional theory (DFT); the obtained density of states (DOS) compares favorably with experiments, also looking suitable for transport analysis. Optical constants including refraction index and absorption coefficient capture major experimental features, aside from an energy shift owed to an underestimate of the band gap that is typical of DFT calculations. We also compute the phonon DOS for the hexagonal phase, obtaining a speed of sound and thermal conductivity in good agreement with the experimental lattice contribution. The calculated heat capacity reaches ~ 1.4 x 106 J/(m3 K) at high temperature, in agreement with experimental data, and provides insight into the low-temperature range (< 150 K), where data are unavailable.Comment: 19 pages, 8 figure

    Biochemical profile of cuttings used for in vitro organogenesis of Prunus africana: An endangered species in Cameroon

    Get PDF
    Prunus africana (Kanda stick) is a valuable medicinal tree classified as priority species for domestication in Cameroon. To measure the ability for developing axillary buds and multiple shoots in relation with the origin and state of explants, some biochemical parameters were assessed in eight types of single-node cuttings. These cuttings were treated with different concentrations of kinetin (kin) indole butyric acid (IBA) and thidiazuron (TDZ) and cultured in Murashige and Skoog (MS) medium. The glutelin content (1.13 ± 0.201 µg/mg FW) was higher compared to those of total albumin, globulin and prolamin and most representative at mature vegetative apical stage (MVA). The highest (15.60 ± 1.966 µg/mg FW) and lower (2.82 ± 0.072 µg/mg FW) amount of phenol compound was observed in the mature dormant stages and immature vegetative distal stage (IVD), respectively. Regarding the peroxidases, highest activity (0.453 ± 0.055 OD/mg/ FW.5 min-1) was obtained in mature dormant apical stage. Apart from IVA state, there was no reactive explant cultured in vitro. The high percentage of budding and proliferation of budding (100%) and rooting (100%) were achieved with 12 μM Kin and 24 μM IBA, respectively. In the presence of 24 μM TDZ, multiple shoot was induced with a maximum of 5 shoots/explants. Micropropagation success of P. africana is influenced by cytokinin, physiological and biochemical status of single node cutting.Key words: Biochemical profile, Prunus africana, budding, multiple shoots, rooting

    Defluoridation of fluoride-rich groundwater in Mayo Tsanaga River Basin-Cameroon using locally produced bone char

    Get PDF
    With fluoride-rich groundwater causing a climatic-dependent fluorosis in Mayo-Tsanaga River Basin, the overall objective of this study was to reduce fluoride concentrations in drinking water to acceptable levels thereby improving the resilience of the population to this climate change induced pathology. The specific objectives were to: (1) assess water chemistry in the study area to re-affirm the undesirable fluoride levels; (2) assess the impact of seasons on the concentrations of fluoride; (3) construct and evaluate the performance of a household bone char-based adsorption defluoridation filter. A combination of hydrogeochemical and engineering analyses demonstrated that the groundwater is predominantly Ca+Mg-HCO3 type, which contains as much as 6.73 mg/l of undesirable concentrations of geogenic fluoride. These concentrations increased with elevated pH, electrical conductivity and in the dry season, and were reduced to less than 0.2 mg/l when the groundwater was subjected to filtration through 300 g of 0.2-0.8 mm faction of charred cow bones in a home-based defluoridation filter. The bone char in the filter can effectively reduce fluoride concentration to less than 0.7 mg/l, which is the local threshold limit, without negative impact on the organoleptic (taste, color and odor) characteristics of drinking water. Compared with the commercially activated carbon, the bone char has an additional capacity of adsorbing fluoride at a rate of 4 mg/liter in 30 minutes, which indicates that with a defined saturation time, the bone char filter can protect the population against climate change-induced fluoride enrichment in drinking water.Keywords: Groundwater. geogenic fluoride. climate dependent fluorosis. bone char defluoridation. water chemistr

    A New Chaotic Map with Dynamic Analysis and Encryption Application in Internet of Health Things

    Get PDF
    © 2013 IEEE. In this paper, we report an effective cryptosystem aimed at securing the transmission of medical images in an Internet of Healthcare Things (IoHT) environment. This contribution investigates the dynamics of a 2-D trigonometric map designed using some well-known maps: Logistic-sine-cosine maps. Stability analysis reveals that the map has an infinite number of solutions. Lyapunov exponent, bifurcation diagram, and phase portrait are used to demonstrate the complex dynamic of the map. The sequences of the map are utilized to construct a robust cryptosystem. First, three sets of key streams are generated from the newly designed trigonometric map and are used jointly with the image components (R, G, B) for hamming distance calculation. The output distance-vector, corresponding to each component, is then Bit-XORed with each of the key streams. The output is saved for further processing. The decomposed components are again Bit-XORed with key streams to produce an output, which is then fed into the conditional shift algorithm. The Mandelbrot Set is used as the input to the conditional shift algorithm so that the algorithm efficiently applies confusion operation (complete shuffling of pixels). The resultant shuffled vectors are then Bit-XORed (Diffusion) with the saved outputs from the early stage, and eventually, the image vectors are combined to produce the encrypted image. Performance analyses of the proposed cryptosystem indicate high security and can be effectively incorporated in an IoHT framework for secure medical image transmission

    Defluoridation of fluoride-rich groundwater in Mayo Tsanaga River Basin-Cameroon using locally produced bone char

    Get PDF
    With fluoride-rich groundwater causing a climatic-dependent fluorosis in Mayo-Tsanaga River Basin, the overall objective of this study was to reduce fluoride concentrations in drinking water to acceptable levels thereby improving the resilience of the population to this climate change induced pathology. The specific objectives were to: (1) assess water chemistry in the study area to re-affirm the undesirable fluoride levels; (2) assess the impact of seasons on the concentrations of fluoride; (3) construct and evaluate the performance of a household bone char-based adsorption defluoridation filter. A combination of hydrogeochemical and engineering analyses demonstrated that the groundwater is predominantly Ca+Mg-HCO3 type, which contains as much as 6.73 mg/l of undesirable concentrations of geogenic fluoride. These concentrations increased with elevated pH, electrical conductivity and in the dry season, and were reduced to less than 0.2 mg/l when the groundwater was subjected to filtration through 300 g of 0.2-0.8 mm faction of charred cow bones in a home-based defluoridation filter. The bone char in the filter can effectively reduce fluoride concentration to less than 0.7 mg/l, which is the local threshold limit, without negative impact on the organoleptic (taste, color and odor) characteristics of drinking water. Compared with the commercially activated carbon, the bone char has an additional capacity of adsorbing fluoride at a rate of 4 mg/liter in 30 minutes, which indicates that with a defined saturation time, the bone char filter can protect the population against climate change-induced fluoride enrichment in drinking water

    Blaming Active Volcanoes or Active Volcanic Blame? Volcanic Crisis Communication and Blame Management in the Cameroon

    Get PDF
    This chapter examines the key role of blame management and avoidance in crisis communication with particular reference to developing countries and areas that frequently experience volcanic episodes and disasters. In these contexts, the chapter explores a key paradox prevalent within crisis communication and blame management concepts that has been rarely tested in empirical terms (see De Vries 2004; Brändström 2016a). In particular, the chapter examines, what it calls, the ‘paradox of frequency’ where frequency of disasters leads to twin dispositions for crisis framed as either: (i) policy failure (active about volcanic blame on others), where issues of blame for internal incompetency takes centre stage, and blame management becomes a focus of disaster managers, and/or: (ii) as event failure (in this case, the blaming of lack of external capacity on active volcanoes and thereby the blame avoidance of disaster managers). Put simply, the authors investigate whether perceptions of frequency itself is a major determinant shaping the existence, operation, and even perceived success of crisis communication in developing regions, and countries experiencing regular disaster episodes. The authors argue frequency is important in shaping the behaviour of disaster managers and rather ironically as part of crisis communication can shape expectations of community resilience and (non)-compliance. In order to explore the implications of the ‘paradox of frequency’ further, the chapter examines the case of the Cameroon, where volcanic activity and events have been regular, paying particular attention to the major disasters in 1986 (Lake Nyos Disaster - LND) and 1999 (Mount Cameroon volcanic eruption - MCE)

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    A Novel Autonomous 5-D Hyperjerk RC Circuit with Hyperbolic Sine Function

    No full text
    A novel autonomous 5-D hyperjerk RC circuit with hyperbolic sine function is proposed in this paper. Compared to some existing 5-D systems like the 5-D Sprott B system, the 5-D Lorentz, and the Lorentz-like systems, the new system is the simplest 5-D system with complex dynamics reported to date. Its simplicity mainly relies on its nonlinear part which is synthetized using only two semiconductor diodes. The system displays only one equilibrium point and can exhibit both periodic and chaotic dynamical behavior. The complex dynamics of the system is investigated by means of bifurcation analysis. In particular, the striking phenomenon of multistability is revealed showing up to seven coexisting attractors in phase space depending solely on the system’s initial state. To the best of author’s knowledge, this rich dynamics has not yet been revealed in any 5-D dynamical system in general or particularly in any hyperjerk system. Pspice circuit simulations are performed to verify theoretical/numerical analysis
    • …
    corecore