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ABSTRACT In this paper, we report an effective cryptosystem aimed at securing the transmission of medical
images in an Internet of Healthcare Things (IoHT) environment. This contribution investigates the dynamics
of a 2-D trigonometric map designed using some well-known maps: Logistic-sine-cosine maps. Stability
analysis reveals that the map has an infinite number of solutions. Lyapunov exponent, bifurcation diagram,
and phase portrait are used to demonstrate the complex dynamic of the map. The sequences of the map
are utilized to construct a robust cryptosystem. First, three sets of key streams are generated from the newly
designed trigonometric map and are used jointly with the image components (R, G, B) for hamming distance
calculation. The output distance-vector, corresponding to each component, is then Bit-XORed with each
of the key streams. The output is saved for further processing. The decomposed components are again
Bit-XORed with key streams to produce an output, which is then fed into the conditional shift algorithm.
The Mandelbrot Set is used as the input to the conditional shift algorithm so that the algorithm efficiently
applies confusion operation (complete shuffling of pixels). The resultant shuffled vectors are then Bit-XORed
(Diffusion) with the saved outputs from the early stage, and eventually, the image vectors are combined to
produce the encrypted image. Performance analyses of the proposed cryptosystem indicate high security and
can be effectively incorporated in an IoHT framework for secure medical image transmission.

INDEX TERMS Internet of health things, encryption, chaotic systems, dynamics analysis, lightweight

security.
I. INTRODUCTION effective security mechanisms are to be developed. In the
As the data represented by medical images are of a vital era of Internet of Healthcare Things (IoHT), the healthcare
source of information concerning the privacy of patients, organizations should pay more attention for deploying secure

cryptosystem to avoid security breaches. The patient’s data
The associate editor coordinating the review of this manuscript and have to be stored and transmitted in a secure way. We intend to
approving it for publication was Muhammad Tariq . build a chaos-based cryptosystem by exploiting the dynamic
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properties of chaotic maps. A dynamic system can be seen as
a mathematical concept with a fixed law [1] describing the
time dependence of a point in the space. A chaotic dynam-
ical system is a category of a dynamical system with very
particular properties, including unpredictability, periodicity,
sensitivity to the initial value(s), and control parameter(s).
Such features are operated in various fields of science and
engineering, including cryptography. Lorenz first discovered
chaos in meteorology [2]. From this seminal work, chaos
theory and chaotic systems are the topics of many discussions
in the scientific community [3], [4].

Designing chaotic systems, scientists discovered that there
are two categories of dynamical systems depending on the
dimension: 1-D and n-D (n > 2) dynamic systems. Some
mighty benefits of 1-D chaotic include low computational
complexity, low processing time, easy to conceive, simple
structure [5], [6]. Cryptosystems have been widely designed
using low dimensional chaotic maps like 1-D. Yet, such maps
are vulnerable to various onslaught given that the range of
chaos dynamics for 1-D maps is limited, initial values and
key parameters produce a small keyspace, and finally, it is
easy to predict their output [7].

The second category, i.e., a high dimensional system,
performs better than a one-dimensional map. Though high
dimensional maps are difficult to implement and have high
computation costs, their sequences can be used in various
domains, including the design of unbreakable encryption
algorithms [7]. These maps have been widely studied in the
last decade. Some examples are Hénon map [8], 2-D sine
map [9], CNN system [10], Chen and Lee system [11], jerk
system [12], Chua’s system [13], and hyperjerk systems [14].
It should be mention that the stability of equilibrium points is
an efficient tool to foretell the dynamic of a system. Chaotic
maps may display a finite number of unstable equilibrium
points. Some recent studies investigated chaos in dynamic
systems with zero equilibrium points [15], with a unique
steady equilibrium point [16], with a large amount of equi-
librium [17]. Here, we introduce a 2-D map with an infinite
number of fixed points, which is particularly new. Besides,
the sequences of the said map are used to design a robust
encryption scheme for colour images.

We can now realize that more and more research has been
done to develop modern encryption algorithms. For instance,
chaos-based ciphers are used to protect the transferred infor-
mation from attacks [18]. In [19], Habutsu et al. designed
a chaos-based cryptosystem using an inverse tent map. The
plaintext is utilized, like the initial state of the inverse tent
map. The system is iterated N times to achieve an encrypted
image. Based on random bits and the vulnerability of the
tent map, classical types of attacks are used to break the
above mention algorithm [20]. Baptista et al. constructed a
new encryption scheme using the logistic map [21]. Very
recently, [22], [23] used chaotic systems and hash function
to design an encryption scheme with the key streams depend-
ing on the input image. Some weaknesses of the algorithms
mentioned above can be stated as follows:
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1) A lot of the state-of-art results exclusively depend on
the key streams.

2) Shannon entropy of the cryptosystem is not pointedly
improved even in recent papers.

3) Noise attack is not discussed by many authors.

4) Many of the works use chaotic systems with limited
chaotic range.

5) The encryption time is not usually addressed, given
that many of the cryptosystems seem computationally
complex.

6) Lack of an exclusive algorithm to be used in an IoHT
framework.

To overcome these weaknesses and contribute to enriching
the literature, we present here the methodology to achieve a
new efficient colour image cryptosystem. We intend to build
a cryptosystem which can effectively ensure security in [oHT
environment. The algorithm is designed using four main com-
ponents: Trigonometric map (Logistic-Sine-Cosine), Man-
delbrot Set, Bit-XOR operation, and new Conditional shift
operation. Some well-known metrics are used to validate the
security and speed of our algorithm.

In our work, at first, the input image received from medical
devices is divided into its components R, G, and B. Three
sets of key streams are generated from the newly designed
trigonometric map and are used jointly with the image com-
ponents (R, G, B) for hamming distance calculation. The
output distance-vector, corresponding to each component,
is then Bit-XORed with each of the key streams. The output
is saved for further processing. The decomposed components
are again Bit-XORed with key streams to produce an output,
which is then fed into the conditional shift algorithm. The
Mandelbrot Set is used as the input to the conditional shift
algorithm so that the algorithm efficiently applies confu-
sion operation (complete shuffling of pixels). The resultant
shuffled vectors are then Bit-XORed (Diffusion) with the
saved outputs from the early stage, and eventually, the image
vectors are combined to produce the encrypted image. The
outcomes of simulation demonstrate the efficiency of the
presented scheme in cryptographic applications. Our main
achievements in this paper can be sum up in the sequel:

1) We introduce a new and efficient 2-D map exhibiting
chaotic dynamics.

2) The dynamic of the proposed map is analyzed with the
help of stability of fixed point, Lyapunov exponents,
bifurcation diagrams, phase portrait.

3) We design a robust cryptosystem using the sequences
of our proposed map.

4) Our proposed cryptosystem is validated using a battery
of well-known tests.

5) Security analysis proves the applicability of our cryp-
tosystem in the secure healthcare environment.

Il. APPLICATION IN HEALTHCARE
In the scenario of Internet of Healthcare Things (IoHT),
the devices are connected to the internet to be able to
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FIGURE 1. Architecture for secure healthcare.

communicate medical data of patients effectively and also to
access to the remote medical facilities with a focus of improv-
ing the health of patients promptly. Medical images are of
paramount part of a patient’s medical data. It needs security
while transmitting. Researchers always focus on developing
effective and exclusive cryptosystem for transmitting medical
images [24]-[28]. Medical images convey very vital informa-
tion concerning the health condition of patients. Usually, hos-
pitals and other health organizations pay special attention to
store and transmit medical images. As IoHT technologies are
emerging nowadays, efficient security mechanisms should
also be incorporated along with. As we focus on the secure
transmission of medical images, this study is an absolute
choice to make it secure. Chaos-based cryptography can be
applied to transmit medical images effectively. It can simply
resist most of the attacks. In this work, we design an exclusive
trigonometric map, followed by an effective cryptosystem
which enciphers the images of any kind, especially any kind
of medical images.

The secure healthcare system is designed as per the fol-
lowing architecture(Fig. 1). The medical images generated
at one location are encrypted by our cryptosystem and are
transferred using IoHT protocols through the internet. The
same image can be deciphered securely at another location
for further analysis. In the following sections, we focus on
the details of the proposed cryptosystem.

lll. 2-D TRIGONOMETRIC MAP

A. STRUCTURE

Recently, the scientific community intensively discussed
Logistic and Sine maps [29], [30]. Historically, the Logistic
map describes animal population dynamics. A 1-D nonlinear
dynamic defines this dynamic as:

Xpr1 = 1x(1 —x,), 1 €10,4] (D

The sinusoidal function was used to derive a 1-D nonlinear

dynamic map termed Sine map and defined as:
Xpt1 = rsin(mwx,), re[0,1] 2)

Some well-known signal estimation algorithms can be eas-
ily used to predict the sequences of almost all existing 1-D

VOLUME 8, 2020
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FIGURE 2. Representation of the function f(x) showing the solutions x;
of system (4).

maps [7]. We address in this paper a new 2-D trigonometric
map with complex, chaotic behaviour compared to current
2-D maps. The proposed map is settling as:

3

Xpt+1 = sin(wxy,) — 7 sin(wyy,)
Ynt+1 = cos(wxp)

The map is chaotic for ® = 100w, r € [0; 1000] and
xo= 1.5, yo =0.5.

B. STABILITY OF EQUILIBRIUM

The behaviour of a system is predicted by the use of stability
of its equilibrium points. xg is the equilibrium point of a
given map defined as x;4+1 = f(xx; M) if x9 = f(x0; M).
Applying this definition to the proposed trigonometric map
we can write the following:

X0 = sin(wxg) — r sin(wyp)

yo = cos(wxp)

“

To solve system (4) we can set and plot (Fig. 2) the function
f(x) = sin(wx) — rsin(wcos(wx)) — x to find the intersection
with the line y = 0. From Fig. 2 it is patent that the
trigonometric map under investigation (4) has infinite number
of fixed points (xo; yo). These points can be either stable or
unstable. To analyze the steadiness of each equilibrium point,
we estimate the Eigen values utilizing the following Jacobian
matrix (5).

_ [ wcos(wx,)  —rwcos(wyn)
J = < —w sin(wxy,) 0 ) )

It is well known that for 2-D maps have two Eigen values
Arand Ay :

1) |A1] < land |Az] < 1 indicates steady equilibrium
point.

2) |A1]l > lor|xz] > 1 indicates unsteady equilibrium
point.

In Table 1, we show some fixed points with the related

Eigenvalues. From the table, it is evident that the fixed points

are stable, given that at least one Eigenvalue has its absolute
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TABLE 1. Stability analysis of the fixed point.

(r,w) Fixed points zo and yo Absolute Eigenvalues [\1] and [\2] | Stability
zo = —0.0270; yo = —0.5843 A1] =496.3; |A2| =496.3 unstable

(10,314) zo = —0.0180; yo = 0.8073 A1| = 570.6; |A2] = 570.6 unstable
’ zg = 0.0180;yo = 0.8073 A =711.2; |[Ao| =457.7 unstable

zo = 0.0270; yo = —0.5843 A1] = 596.4; [A2| = 413.0 unstable

(b)

FIGURE 3. Phase portrait of the proposed trigonometric map (a) and the
Hénon map (b).

value more significant than the unity. Consequently, neigh-
bouring states can be embossed by the equilibrium point, and
the map will be swing.

C. PHASE PORTRAIT

Phase portrait represents a valuable tool to demonstrate the
chaotic dynamics in a given dynamical system. We have
plotted the phase portrait of the proposed trigonometric map
(see Fig. 3). Compared to some well-known 2-D maps like
the Hénon map, the states of the proposed trigonometric
map are more distributed in the phase plane. Consequently,
the trigonometric map understudy can generate more random
output sequences.

D. BIFURCATION DIAGRAM
The bifurcations diagram is a nonlinear dynamic system
analysis tool showing the asymptotic evolution of the state

137734

of the oscillator. Graphically, the bifurcation diagram is the
representation of the sampled steady-state values of one of
the variables on the vertical axis versus the variation of the
control parameter on the horizontal axis. The dynamic may
change from periodic to quasi-periodic, chaotic, or hyper-
chaotic behaviour. Figure 3 shows the bifurcations of our
proposed trigonometric map and a 2-D map (Hénon map) for
comparison.

It should be noted that the dynamic of the Hénon map
moves from periodic to chaotic behaviour with intertwin-
ing periodicity in chaotic dynamics(see Fig. 4-b). Given
that parameter, disturbance can run a system from chaotic
dynamic to periodic dynamic, this type of dynamic is not
desired in practical applications where the system only works
in chaotic windows [7]. To solve this issue, a trigonometric
map with an aperiodic bifurcation diagram (see Fig. 4-a) is
proposed.

E. HIGHEST LYAPUNOV EXPONENT

The degree of convergence and divergence of close orbits
of the attractors for various directions in the state space is
called Lyapunov exponent (LE). The n-D dynamic system
possesses n LEs. The highest Lyapunov exponent (HLE) is a
popular metric used to analyze the behaviour of a dynamical
system [31]. Lyapunov exponents of a discrete chaotic map
are calculated using the following formula:

o1
LE; = lim —In A, (6)
where j = 1,2,...,N and A1, A, ..., Ay are the N Eigen-
values of the Jacobian matrix. Three cases can be considered
concerning the value and the sign of the Lyapunov exponents:

1) If HLE > 0, we conclude that the map is chaotic. Also,
if the HLE is large enough, this shows that close orbits
diverge quickly;

2) If the system possesses more than one positive Lya-
punov exponents, hyperchaotic behaviour is identified;

3) If HLE < 0, the dynamic of the system is periodic.

Using the Wolf algorithm [31], we computed the HLE

(Fig. 4-a) of the trigonometric map and the HLE of Hénon
map (see Fig. 5-b). It is evident that collated to Hénon map,
the HLE of the proposed trigonometric map is always positive
and get more substantial. Consequently, close trajectories
diverge faster.

F. ApEn: APPROXIMATE ENTROPY
ApEn (Approximate entropy) represents a measure employed
to measure the rate of reliability and the uncertainty in the

VOLUME 8, 2020
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r

(b)

FIGURE 4. Bifurcation plot of the trigonometric map (a) and the Hénon
map (b).

variations of series information [32]. It was also used to inves-
tigate the chaotic behaviour of chaos-based systems [33].
Indeed, it quantifies the complexity and irregularity of the
time series derived from chaotic systems. An interpretation
of such entropy is as follows: Series with much redundancy
in its variation is more foreseeable than series with reduced
redundancy. ApEn computes the probability that identical
patterns of objection does not cause extra similar observa-
tions [34]. A small ApEn reflects many redundancy patterns
in the considered time series, while high ApEn refers to better
unpredictability in such time series. The calculation details of
ApEn are as follows:

Let x(1),x(2),...,x(N) be a N data sample,
y(1), y(2),...,y(N —m+1) € R™ and a m-D sequence given
as:

y@) = [x@),x@G+ 1), ...,x@G+m—1)] 7
wherei€ 1 < i < N —m+ 1 and m denotes the length

of compared run of data. The length amid y(i) and y(j) is
expressed as

@)yl = max (xG+h—1)=xG+h=D]) @

VOLUME 8, 2020
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FIGURE 5. HLE of the proposed trigonometric map (a) and the Hénon
map (b).

The statistics of d [y(i), y(j)] within a filtering level
r(r > 0) is calculated as

C' () =N —m+ 17" Sum{d [y, y)l <r} (9
The mean of the logarithm of C" can be calculated as

N—m+1
" (N =N-m+D7" > In ") (10)
i=1

Accordingly, the ApEn is given as:
ApEn(m,r) = lim [¢" () —¢" (] aD
N—oo

Given that the data sample N is small, the ApEn is simpli-
fied as

ApEn(m, r,N) = ¢ (r) — ¢" ' (r) (12)

Figure 6 shows the ApEns of the trigonometric map versus
those of the Hénon map. It is found that the ApEns of the
trigonometric map are always higher than those of the Hénon
map. The average ApEns of x,/y, time series is equal to
1.0887/1.1758 for the proposed map and to 0.4581/0.4576 for
the Hénon map. Consequently, the trigonometric map is more
complex than the Hénon map, i.e., it can produce time series
with better unpredictability behaviour.
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FIGURE 6. Approximate entropy of the trigonometric map vs. the Hénon
map: (a) for x, and (b) for y, (m =2, N = 1000).

IV. TRIGONOMETRIC ENCRYPTION

Image encryption techniques can be mainly categorized into
spatial domain based techniques and transform-based tech-
niques. Image enciphering methods based on the spatial
domain are those techniques applied directly to the pixels
of the input image [35]-[38]. In the case of transform-based
cryptosystems, the plain text is converted from spatial area
to the frequency area by the usage of some well-known
mathematical transformations. The reconstructed image is
encrypted and re-transform from the frequency domain to the
spatial domain [39]. Due to the unique properties of chaotic
sequences, the chaos-based enciphering method is one of the
best encryption techniques in spatial domain encryption [40].
In this context, we designed an unbreakable cryptosystem
using the sequence of the proposed trigonometric chaotic
map. A new conditional shift algorithm based on a modified
Mandelbrot Set is used to create confusion on the constituents
of input colour images. Using the bit-xor operation, we dif-
fuse the confusing image to achieve the cipher image.

137736

(@) (b)

FIGURE 7. Mandelbrot set image (a) and modified Mandelbrot set
image (b).

Let us start by presenting the new conditional shift algo-
rithm based on a new Mandelbrot Set:

A. MODIFIED MANDELBROT SET

A complex plane with a collection of points is defined as
Mandelbrot Set. A given point P in the complex plane is
related to a complex number p € C/p = reé? where r is
the magnitude of p and @ is its argument. A point P in the
complex plane belongs to the Mandelbrot Set if:

nll)rgo Zntl = zﬁ +pH — 00  where 7o = 0. (13)

If a set of points belonging to the Mandelbrot set in
the complex plane are coloured in grey, we obtain the
shape of Fig. 7-a. To elucidate the set of pixels coloured
in black from Fig. 7-a we used algorithm 1 to achieve
a new Mandelbrot (Figure 7-b) set where W(i,j) repre-
sents the intensity of the pixel situated at the position (i, j)
in Fig. 7-a.

Algorithm 1 Modified Mandelbrot Set

Input: read the image of figure 6-a
Output: obtain the image of figure 6.b
if W(,j) ==0 then

W@, ) =[G *j)+ c] mod 256
end

B. NEW CONDITIONAL SHIFT ALGORITHM

The conditional shift algorithm used in combination with
the modified Mandelbrot set image is outlined as in
Algorithm 2.

C. PROPOSED ENCRYPTION ALGORITHM

As mentioned above, a new conditional shift algorithm based
on a modified Mandelbrot Set is used to generate confusion
on the constituents of the plain colour image. Using the
XOR operation, we diffuse the confusing image to achieve
the cipher image. The general framework of the proposed
cryptosystem is depicted in Fig. 8 and nine steps can be used
for description.

VOLUME 8, 2020
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Algorithm 2 New Conditional Shift Algorithm

Input: M is the modified Mandelbrot set image of figure 6-b, Xpgr, Xpg and X pp are the output of bit XOR amid R,
G and B channels of the plain image and chaotic sequences.
Output: Sg, Sg and SB are the final shifted matrices corresponding respectively to Xpr, X pg and X pp

while i =0 ton do
//n represents the total of columnsin M

Find the maximum value of i row elements of Xpr, X pg and X pp;

denote them as max,;, maxg;, Maxy; respectively.
Apply shifting operation as follows :

case 1 doif (max; < maxp;) then

apply left cyclic shift max; times on i

ith

row of Xpr

else apply right cyclic shift max; times on i"* row of Xpr

end if

end

case2doif (max; < max,;) then

apply left cyclic shift max; times on i

row of XpG

else apply right cyclic shift max; times on i'™ row of Xpg
end if
end
case 3 doif (maxi < maxgi) then
apply left cyclic shift max; times on i" row of Xpp
else apply right cyclic shift max; times on i'™ row of Xpg
end if
end
[ _ ] Decompose nto |# 8 [ Hamming | HeHo Hs Xpg(i) = bitxor(G(i), S2(1)); (15)
Plain Image > R,G,B > Distance o . - .
’ y Xpp(i) = bitxor(B(i), S3(1)); (16)
51,52,53
_v 515253 Trigonometric | 51525 _' Step 5: Calculate the Hamming distance between R, G, B,
Mandelbrotset e key-streams i and chaotic Sequences to produce Hg, Hg and Hp as:
MDy, MDy, MD3 Xpr> XG> Xps Yok Xbo: Xos
A \ v Hgr(i) = Ham_dist(R(i), S1(7)) 17
Conditional shift S % > Diffusion . CG»CB HG(I) = Ham_dlSt(R(l)v SZ(l)) (18)
Hp(i) = Ham_dist(R(i), S3(i)) (19)

FIGURE 8. General framework of the proposed cryptosystem.

Step 1: Input a plain image, P. we used medical colour
images labelled as “Img01”, ‘Img02’ and “Img03” each of
dimension 256 x 256.

Step 2: Decompose P to R, G, and B constituent and convert
them to binary form.

Step 3: Using the trigonometric map, we generate three
chaotic sequences (51,52 and S3) for each component of the
input image. Initial seed are xo = 1.5; yo = 0.5; r =
10; @ = 314. Normalize each sequence using S; =
mod((X;x (10'9), 256) i =1, 2, 3 and convert them to their
respective binary form.

Step 4: Apply XOR operation amid the binary R, G,
B channels and the binary form of chaotic sequence (S1, S2,
and $3) and produce three outputs: Xpr, Xpg and Xpp as:

Xpr(i) = bitxor(R(D), S1(i)); (14)

VOLUME 8, 2020

For any two numbers a and b, the hamming distance between
them is defined as the different bits count at the same position
in both a and b.

Step 6: Realize XOR operation on Hamming distance and
chaotic sequences to produce Xr, X and Xp as:

Xr(i) = bitxor(Hg(i), S1(1)); (20)
Xg(i) = bitxor(H (i), S»(0)); 2n
Xp(i) = bitxor(H (i), S3(1)); (22)

Step 7: Perform conditional shift algorithm (see algo-
rithm 2) on Xpg, Xpg and Xpp using Mp, Mpr and Mp3
generated from Mandelbrot Set (see algorithm 1) to perform
confusion and produces Sg, Sg and Sp.

Step 8: Final diffusion operation using bit-xor on Sg, Sg,
Sp and Xg, X, Xp to produce the cipher image components

137737
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(a) Plain-Img01 (b) Plain-Img02 (c) Plain-Img03

(d) Cipher-Img01

(e) Cipher-Img02 (f) Cipher-Img03

FIGURE 9. Results of visual tests.

as follows:

Cr(i) = mod(((bitxor(Sg(D), Xg(1))), 256);  (23)
Ca(i) = mod((bitxor(Sg(i), X (i), 256);  (24)
Cp(i) = mod(((bitxor(Sp(0), X (1)), 256);  (25)

Step 9: The image components are fused to form the final
cipher image C.

V. SECURITY ANALYSIS OF THE PROPOSED
CRYPTOSYTEM

To examine and assess the security of the above encryption,
the trigonometric chaotic map with infinite equilibrium is
solved with initial seed as: xop = 1.5 and yp = 0.5 and system
parameter as @ = 314 and r = 10. The data set is com-
posed of three different colour images each of size 256 x256
(“Img03, “Img02” and “Img01”’). The simulations were
done on a laptop endowed with Intel processor ® core
TM i5-2450QM 6 GB of RAM and MATLAB R2016b
application software. Figure 9 shows the outcome of visual
tests. The coded images are visually unrecognizable. How-
ever, some security analysis tools like statistical, differen-
tial analysis need to be carried to validate the encryption
process.

A. NPCR AND UACI ANALYSIS

NPCR and UACI are the main metrics utilized to certify
if a cryptosystem can withstand differential intrusions [41].
NPCR determine the quota of different intensity pixel among
two encoded images of (i, j) and I'(i, ) while UACI mea-
sures the mean intensity of divergence between the encrypted
version of I(i, j) and I'(i, j). Mathematical computations are:

m—1n—1 o
> 2 DG )
i=0 j=0

NPCR = x 100, (26)
mXn
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TABLE 2. NPCR and UACI outcomes.

Image NPCR % | UACI %
ImgO01 99.6195 33.5867
Img02 99.6134 33.4794
Img03 99.6109 33.4748
TABLE 3. Chi-square test of the histograms.
x2-test
Image | Component Score Result
R 287.992 Pass
Img01 G 256.687 Pass
B 291.929 Pass
R 253.867 Pass
Img02 G 226.398 Pass
B 232.710 Pass
R 257.859 Pass
Img03 G 244.242 Pass
B 225.117 Pass

L ifE @, j) #E' (@, J)
0, fE @, ) =E' (G, )
m—1n— 1|IE(l ])

= Y

leO

where D (i, j) =

'@, ])|

UACI = 100

27

NPCR and UACI range from O to 100. A good cryp-
tosystem should lead to an NPCR close to 100%. Gener-
ally, the UACI of useful encryption algorithms is close to
33.6% [42]. Table 2 provides NPCR and UACI of data set,
modifying the unique from different positions. From these
results, the proposed encryption algorithm is unbreakable.

B. HISTOGRAM AND CHI-SQUARE ANALYSES

Histogram and Chi-square analyses are two metrics com-
monly used to test the robustness of a cryptosystem against
third party intrusion. With this regard, uniformity in the dis-
tribution of pixels is the property of encrypted data, while
original data pixels are non-uniformly distributed. Figure 10
illustrates the histograms of the output images, which are flat
and histograms of input images completely different from the
previous ones. This flatness is more verified by applying the
Chi-square analysis [23]. Table 3 lists the Chi-square results
along with their p-values whit a weight level of 0.05 consid-
ered for the histograms of the cipher images. The Chi-square
test is accepted (i.e., the histogram is uniform) if the obtained
score is smaller than th(255, 0.05) = 293.2478, i.e., the
corresponding p-value is higher than 0.5. According to results
given in Table 3, the histograms of the encoded images follow
the features of uniformity in the distribution of pixels. This
proves that the cryptosystem under investigation can effec-
tively withstand any histogram-based attack.

C. CORRELATION OF ADJACENT PIXELS
A cryptosystem can resist statistical intrusion when the corre-
lation is minimized. The following computations were carried
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FIGURE 10. Histograms representation of the plain and encrypted data
set (R, G, and B channels).

out to achieve the correlation values:
E((x—-—EX)Y—-—EQ))
VD (x)+/D (y)

N
with E (x) = N ;xi

Coryy, =

1 & )

and D (x) = v ;(x, E (x)) (28)
where x and y symbolized the values of the pixels at the same
index of the images I and I’; P(x) and T(x) the variances
with N the number of used pixels. Table 4 groups together
the correlation coefficients obtained from the original and
encoded images. Besides, the distribution of neighbouring
pixels is represented in Table 5. It is evident from Table 5
that we achieve minimal correlation values in three directions,
including vertical, horizontal, or diagonal. Consequently,
the encryption scheme is unbreakable by the attackers regard-
ing the Correlation coefficient.
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TABLE 4. Correlation coefficient of test images.

Image | Direction R G B
H -0.0018 | 0.0020 | -0.0012
Img01 \ 0.0018 0.0025 0.0020
D 0.0002 | -0.00I5 | -0.0008
H -0.0010 | -0.0001 | 0.0010
Img02 \ 0.0007 0.0008 | -0.0009
D 0.0001 | -0.0019 | -0.0022
H -0.0007 | 0.0013 0.0005
Img03 Vv -0.0013 | 0.0028 | -0.0001
D -0.0014 | 0.0018 | -0.0008

D. BIT DISTRIBUTION UNIFORMITY INSIDE EACH
BIT-PLANE

Bit-planes are produced by converting an image to its
binary form. They consist of the group of bits relative to
each bit location in the binary representation of the pix-
els. In grayscale images, the pixels are encoded into 8 bits,
which yields eight bit-planes. As reported in [43], the higher
bit-planes in a plain image present high correlation values,
which can be in favour of a potential attacker; he/she tries to
extract some useful information by analyzing the connection
in higher bit-area. To overcome such an issue, the percentage
of 1’s and 0’s within each bit-plane must be at a balanced rate
of 50%. It is clear from Table 6 that, for all testes images,
the percentage of 1’s within all bit-planes are very close to
50%, which reflects an excellent uniformity within these bit-
planes. So, no information can be provided by examining the
distribution rate of 1’s and 0’s in these bit-planes.

E. SHANNON ENTROPY

Shannon entropy measures the amount of information hidden
in an image. It is an evaluation of the randomness for a given
image. Considering the probability p(z;) of each pixel z;,
we can compute the global entropy as:

255
E@)=-)_ p@)logp@). (29)

i=0
The pixels of an image are randomly distributed if the
entropy value is close to 8 [13], [41]. Nevertheless, this
randomness is efficiently evaluated using local entropy rather
than global [41]. Table 7 provides the global and local
entropies calculated for the used data set. It obvious from
these results to conclude that the proposed trigonometric
encryption achieves highly randomness in the cipher images.

F. KEY RANGE ANALYSIS

To withstand brute force intrusions, the key range of a cryp-
tosystem should be above 2!%°. The keyspace is defined as
the set of all combinations of secret keys:

1) The values of parameter- » ranges from 0 to 1000 (three
different values from the range for each channel)

2) The matrices of the hamming distance corresponding
to each component: Hg, Hg, Hp. (256 x 256 is the size
of both the Hamming distance matrix and the image.
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TABLE 5. Correlation distribution of cipher images.

N° Image la-
bel Plain-R Cipher-R Plain-G Cipher-G Plain-B Cipher-B
1 Img01
2 Img02 - -
3 Img03 % e ety =

TABLE 6. Percentage of ‘1’s in cipher images for the proposed scheme.

There are (1001 x 10'°)3 different values for r. There
are 65,536 elements in each matrix. There are 256 (0-255)
different values possible for each element location. For the
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Image | Component | 8th bit 7th bit 6th bit 5th bit 4th bit 3rd bit | 2nd bit 1st bit
R 49.9420 | 49.9374 | 50.3112 | 49.0997 | 50.1770 | 49.8138 | 50.1083 | 50.2502
Img01 G 50.0549 | 50.2075 | 49.9176 | 49.9816 | 49.9069 | 49.9038 | 50.5447 | 50.0671
B 50.1892 | 49.9435 | 49.7222 | 50.1708 | 50.2059 | 50.0427 | 50.4196 | 50.1846
R 49.7040 | 49.9496 | 50.0580 | 50.0031 | 50.1053 | 49.8871 | 49.9619 | 49.8535
Img02 G 49.9146 | 49.8901 | 50.1312 | 49.9695 | 50.0015 | 50.1099 | 49.9237 | 49.8291
B 49.6109 | 50.0595 | 49.7910 | 50.2991 | 49.7498 | 49.9451 | 49.9954 | 49.9374
R 49.6216 | 50.2441 | 49.7910 | 49.9741 | 49.8734 | 50.0748 | 49.9176 | 49.8550
Img03 G 50.2274 | 50.1205 | 49.9283 | 49.4446 | 50.1984 | 50.1068 | 49.9725 | 49.9390
B 49.5407 | 50.2289 | 49.9588 | 49.8947 | 49.8047 | 49.9664 | 49.9084 | 49.8932

entire three hamming distance matrices, the total number of
different values possible is around 256(3:336%3)_S¢ the total
keyspace is around (2 x 101%)3 x(256)©5:536x3) This value
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TABLE 7. Global and local entropies for the encrypted data set.

Image | Component | Global entropy | Local entropy

R 7.9968 7.9040
Img01 G 7.9972 7.8990

B 7.9968 7.9021

R 7.9972 7.9033
Img02 G 7.9975 7.9031

B 7.9974 7.9014

R 7.9972 7.9037
Img03 G 7.9973 7.9039

B 7.9975 7.9036

is greater than 2'%°, which shows that our system is resistant
to brute-force attacks. Apart from these keys, we also use
some keys with a modified Mandelbrot set and the fixed
initial values of the Trigonometric map.

G. CLASSICAL TYPES OF ATTACK

Everyone can see and interpret the encryption architec-
ture, and its working as it is open to all, except the keys
that are transferred between the sending and receiving side.
Among the classical type of attacks (chosen-plaintext, cho-
sen ciphertext, ciphertext only, and known-plaintext attack)
chosen-plaintext attack is the most dangerous [44]. In this
attack, the hacker uses the vulnerability of the system to
obtain access to the cryptosystem and recover the ciphertext
temporarily. When a cryptosystem resists to chosen-attacks,
it can withstand the remaining three intrusions. Our algo-
rithm is susceptible to parameter r of the trigonometric map
proposed and also to the initial seed of the same map. It is
very significantly stating that there is an essential step in the
encryption algorithm, which deals with the calculation of the
Hamming distance among the constituent components of the
input image and the chaotic key sequences. The hamming
distance vectors are also acting as keys.

The Hamming distance sequence plays a significant
function in the subsequent processing and the overall secu-
rity of our encryption system. Consequently, the cryptosys-
tem under investigation depends on both the keys and the
plain image. Thanks to their ability to disabling the per-
mutation/substitution processes, the all-black, and all-white
data set are the most popular chosen images for break-
ing an image cryptosystem. By doing so, the attacker
tries to recover some valuable data from the secret key.
Figure 11 depicts the cipher full-black and full-white images,
alongside their histograms. The cipher images are noisy-like
images so that no visual information can be extracted from
them. Figure 12 illustrates the correlation among bordering
pixels pairs of the cipher full-black and cipher full-white
images. Table 8 lists some quantitative statistical analyses for
full-black images and full-white images. It is found for both
cipher images that the histograms match to a uniform distri-
bution, the adjacent pixel pairs satisfy zero-correlation, and
the global and local entropies are nearly equal to their ideal
values of 8 and 7.9024693 [23], respectively. Accordingly,
the proposed scheme is qualified to encipher full-black and
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(©)

FIGURE 11. Cipher images of the (a) all-black and (c) all-white images;
their histograms (b) and (d), respectively.

FIGURE 12. Correlation of adjacent pixels couples (in the horizontal,
vertical, and diagonal directions) for the all-black and all-white images in
row-major order.

full-white images ideally and resisting known-plaintext and
chosen-plaintext attacks.

H. NOISE INTRUSION ANALYSIS

During the acquisition of images, Gaussian noise is added
to the images. This noise is mainly due to the level of
illumination and electronic circuits connected to the sensor.
A robust encryption/decryption technique should be able to
operate on such type of images. Another type of noise mostly
encountered on images is the salt-and-pepper noise. It is
mainly introduced in the image by the error elements from
the analogue-to-digital converter or through bit changes that
occurred during transmission. Salt & pepper noise affects the
image in such a way that bright regions will be affected by
dark pixels, and dark regions will be affected with bright
pixels [45]. A well-designed encryption algorithm must
resist to this noise. To prove the robustness of the encryp-
tion/decryption algorithm, a low level of Gaussian noise and
salt & pepper noise is induced into the encrypted image.
Our algorithm is then used to decrypt the noise-infected
cipher images. Table 9 shows that the decrypted images are
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TABLE 8. Statistical analyses of the cipher full-black and full-white images.

x? test of histogram Correlation information entropy
Image score p-value | Horizontal | Vertical | Diagonal | Global entropy | Local entropy
full-black | 2452969 | 0.6575 0.0023 0.0015 -0.0030 7.9973 7.9008
full-white | 233.2422 | 0.8321 -0.0005 0.0005 -0.0052 7.9974 7.8998

TABLE 9. Gaussian noise and Salt & pepper noise attack analysis.

N° image Gaussian noise encrypted | Gaussian noise decrypted | Salt & pepper noise en- | Salt & pepper noise de-
name crypted frypted

1 Img01

2 Img02

3 Img03

TABLE 10. Comparison of running speed of the proposed algorithm (in seconds) and other related algorithms for various sizes of images.

Scheme Type Image size

128 x 128 | 256 x 256 | 512 x 512 [ 1024 x 1024
Proposed Colour image 0.126985 0.258994 0.655412 1.323154
Ref. [41] | Grey-scale image 0.0138 0.0487 0.2177 0.7813
Ref. [46] | Grey-scale image 0.0244 0.0949 0.4010 1.9857
Ref. [9] Grey-scale image 0.013 0.0538 0.2338 1.1494
Ref. [47] | Grey-scale image - 0.382 1.489 -
Ref. [48] | Grey-scale image - 0.5554 - -

understandable. We can observe that the encryption method
is more efficient with Salt & pepper.

I. OCCLUSION ATTACK

During transmission of the cipher image from sender to
receiver, some data or pixel information may be occluded
or lost. A transmission channel can cause a mislay of a
part of the transmitted message [24], [26]. Our cryptosystem
must be efficient in terms of resisting occlusion attacks too.
Through analysis, we test the capacity of producing original
images from the occluded cipher images. This test consists of
creating on the encrypted image of size m x n, a dark matrix
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of size w x h withw x h < m x n. Our algorithm is then
used to decrypt the cipher images with occlusion areas. The
results are shown in Fig. 13. Accordingly, occlusion does not
affect the decryption process.

J. ENCRYPTION TIME

One of the essential measures to assess the performance of
an algorithm is its running speed. An encryption algorithm
should take minimum execution time so that it can be effec-
tively used in enciphering images. The tech world accepts
only those with fast response [41]. In that sense, we should
also check the speed of our proposed encryption algorithm
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TABLE 11. Comparison of average values of correlation coefficients, NPCR, UACI, x2-test, and information entropy of the proposed mechanism alongside

other related schemes.

. Correlation Entro
Algorrithm q & " NPCR% | UACI% | x*-test ey pyLoca]
Proposed 0.00267 | -0.00008 | -0.00007 99.633 3353 254.9902 | 7.9972 | 7.9021
Ref. [41] -0.0042 -0.0049 -0.0045 99.6101 33.525 249.8444 | 7.9995 | 7.9030
Ref. [49] -0.0016 -0.0026 0.0116 99.598 33.43 249.4286 | 7.9972 | 7.9025
Ref. [50] 0.0022 0.0017 0.0019 99.611 33.47 240.3535 | 7.9993 | 7.9024
Ref. [51] 0.0020 0.0007 0.0004 99.5215 33.2585 | 277.9708 | 7.9824 -
Ref. [46] -0.0033 -0.0008 -0.0002 99.6061 33.4548 - - -
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FIGURE 13. Occlusion attack results.

against each test image. Table 10 shows the running speed
of the proposed algorithm (in seconds) and other related
algorithms as reported in [9], [41], [46]-[48] for various size
of images, which demonstrates the efficiency of the presented
mechanism. Note that the stated results in Table 10 are for
tested grey-scale images except our proposed mechanism are
for colour images.

K. COMPARATIVE ANALYSIS

This part verifies how well the evaluation of different param-
eters in terms of security is boosted over existing works.
Table 11 compare the evaluation measures of correlation
coefficients, NPCR, UACI, Xz-test, and information entropy
with other related schemes. The cryptosystem behaves in
such a way that it exhibits high sensitivity to the input image,
and it can block the classical types of intrusions, showing
that our system possesses more security features than existing
schemes.

VI. CONCLUSION

In this work, we designed a 2-D trigonometric map. First,
some well-known dynamic analysis tools like Lyapunov
exponent, bifurcation diagram, and phase space trajectories
are used to illustrate the chaotic dynamic of the map. Beyond,
it was shown that the map has infinite equilibria. Second,
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a robust encryption/decryption scheme for colour images is
designed. The encryption/decryption scheme is based on four
ingredients: the proposed trigonometric map, Mandelbrot
Set, Bit-XOR operation, and new Conditional shift operation.
The dominant contribution in our study is to introduce a
chaotic-cryptographic system which can block all forms of
intrusions, and also improve the Shannon entropy measure
of the cipher images. A variety of metrics are used for
experimental validation of the proposed algorithm, including
histogram study, Shannon entropy study, NPCR, and UACI
study, keyspace study, Noise attack study, occlusion study,
and speed study. Finally, a comparative analysis shows the
superiority of our algorithm over some robust existing algo-
rithms. The analysis part clearly proves that the system can
be effectively used to encrypt medical images in [oHT frame-
work. In future investigations, we intend to combine discrete
orthogonal moment and s-box to design and implement on
raspberry board a new robust encryption algorithm.
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