97 research outputs found

    Gene expression profiling of Ewing sarcoma tumours reveals the prognostic importance of tumour–stromal interactions: a report from the Children's Oncology Group

    Full text link
    Relapse of Ewing sarcoma (ES) can occur months or years after initial remission, and salvage therapy for relapsed disease is usually ineffective. Thus, there is great need to develop biomarkers that can predict which patients are at risk for relapse so that therapy and post‐therapy evaluation can be adjusted accordingly. For this study, we performed whole genome expression profiling on two independent cohorts of clinically annotated ES tumours in an effort to identify and validate prognostic gene signatures. ES specimens were obtained from the Children's Oncology Group and whole genome expression profiling performed using Affymetrix Human Exon 1.0 ST arrays. Lists of differentially expressed genes between survivors and non‐survivors were used to identify prognostic gene signatures. An independent cohort of tumours from the Euro‐Ewing cooperative group was similarly analysed as a validation cohort. Unsupervised clustering of gene expression data failed to segregate tumours based on outcome. Supervised analysis of survivors versus non‐survivors revealed a small number of differentially expressed genes and several statistically significant gene signatures. Gene‐specific enrichment analysis demonstrated that integrin and chemokine genes were associated with survival in tumours where stromal contamination was present. Tumours that did not harbour stromal contamination showed no association of any genes or pathways with clinical outcome. Our results reflect the challenges of performing RNA‐based assays on archived bone tumour specimens. In addition, they reveal a key role for tumour stroma in determining ES prognosis. Future biological and clinical investigations should focus on elucidating the contribution of tumour:micro‐environment interactions on ES progression and response to therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111186/1/cjp29.pd

    Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia

    Get PDF
    Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide towards the relevant classification panel (T-cell acute lymphoblastic leukemia (T-ALL), B-cell precursor (BCP)-ALL and/or acute myeloid leukemia (AML)) and final diagnosis. Now we built a reference database with 656 typical AL samples (145 T-ALL, 377 BCP-ALL, 134 AML), processed and analyzed via standardized protocols. Using principal component analysis (PCA)-based plots and automated classification algorithms for direct comparison of single-cells from individual patients against the database, another 783 cases were subsequently evaluated. Depending on the database-guided results, patients were categorized as: (i) typical T, B or Myeloid without or; (ii) with a transitional component to another lineage; (iii) atypical; or (iv) mixed-lineage. Using this automated algorithm, in 781/783 cases (99.7%) the right panel was selected, and data comparable to the final WHO-diagnosis was already provided in >93% of cases (85% T-ALL, 97% BCP-ALL, 95% AML and 87% mixed-phenotype AL patients), even without data on the full-characterization panels. Our results show that database-guided analysis facilitates standardized interpretation of ALOT results and allows accurate selection of the relevant classification panels, hence providing a solid basis for designing future WHO AL classifications

    Pediatric T-cell acute lymphoblastic leukemia

    Get PDF
    The most common pediatric malignancy is acute lymphoblastic leukemia (ALL), of which T-cell ALL (T-ALL) comprises 10–15% of cases. T-ALL arises in the thymus from an immature thymocyte as a consequence of a stepwise accumulation of genetic and epigenetic aberrations. Crucial biological processes, such as differentiation, self-renewal capacity, proliferation, and apoptosis, are targeted and deranged by several types of neoplasia-associated genetic alteration, for example, translocations, deletions, and mutations of genes that code for proteins involved in signaling transduction, epigenetic regulation, and transcription. Epigenetically, T-ALL is characterized by gene expression changes caused by hypermethylation of tumor suppressor genes, histone modifications, and miRNA and lncRNA abnormalities. Although some genetic and gene expression patterns have been associated with certain clinical features, such as immunophenotypic subtype and outcome, none has of yet generally been implemented in clinical routine for treatment decisions. The recent advent of massive parallel sequencing technologies has dramatically increased our knowledge of the genetic blueprint of T-ALL, revealing numerous fusion genes as well as novel gene mutations. The challenges now are to integrate all genetic and epigenetic data into a coherent understanding of the pathogenesis of T-ALL and to translate the wealth of information gained in the last few years into clinical use in the form of improved risk stratification and targeted therapies. Here, we provide an overview of pediatric T-ALL with an emphasis on the acquired genetic alterations that result in this disease

    T-cell acute lymphoblastic leukemias and TCR signaling

    No full text
    Les LeucĂ©mies Aigues Lymphoblastiques T (LAL-T) sont des hĂ©mopathies malignes causĂ©es par la prolifĂ©ration de cellules immatures T bloquĂ©es Ă  un stade donnĂ© de leur diffĂ©renciation. Leur oncogenĂšse est multigĂ©nique. Une anomalie de type A (Ă  l’origine du blocage de diffĂ©renciation) ainsi que des anomalies de type B (gains de fonctions de type prolifĂ©ration, mĂ©tabolisme, rĂ©sistance Ă  l’apoptose
) sont souvent retrouvĂ©es chez le mĂȘme patient. Ces leucĂ©mies reproduisent individuellement les diffĂ©rentes Ă©tapes de la maturation thymique humaine. En fonction de l’immunogĂ©nĂ©tique (phĂ©notype et rĂ©arrangement des loci des TCR), 3 groupes de LAL-T sont ainsi identifiables : les LAL-T immatures (correspondant aux formes non T-restreintes), les LAL-T corticales (bloquĂ©es autour de la b-sĂ©lection) et les LAL-T matures TCR/CD3+. Mon travail de thĂšse a consistĂ© Ă  dĂ©terminer Ă  quel point l’activation et la signalisation du TCR pouvaient ĂȘtre impliquĂ©es dans la biologie de cette hĂ©mopathie. Nous avons utilisĂ© le modĂšle transgĂ©nique Marilyn TCR-HY et montrĂ© in vitro (lignĂ©e TLX+) et in vivo (modĂšle de leucĂ©mogĂ©nĂšse TEL-JAK2) que l’activation du TCR par la reconnaissance de son peptide spĂ©cifique (DBY, peptide prĂ©sent uniquement dans les souris mĂąles) empĂȘche le dĂ©veloppement et le maintien de la leucĂ©mie. L'induction de la signalisation du TCR par des anticorps monoclonaux dirigĂ©s contre la chaĂźne de signalisation CD3e (anti-CD3e humain, OKT3 ; anti-CD3e murin, 145-2C11) entraĂźne Ă©galement une mort massive des cellules leucĂ©miques en induisant un programme d'expression gĂ©nique et de phosphoproteomique ressemblant Ă  la sĂ©lection nĂ©gative thymique. In vitro dans des LAL-T primaires, la stimulation du complexe CD3/TCR par un anticorps anti-CD3 entraĂźne la mort cellulaire des LAL-T CD3/TCR+ et non des TCR/CD3- quelque soit leur mĂ©canisme oncogĂ©nĂ©tique sous-jacent. Finalement, le traitement anti-CD3 in vivo empĂȘche la leucĂ©mogenĂšse chez les souris transplantĂ©es avec des LAL-T murines et humaines. Ces donnĂ©es fournissent un fort rationnel en faveur d’une thĂ©rapie ciblĂ©e, basĂ©e sur le traitement anti-CD3 des LAL-T matures CD3/TCR+. Ce travail dĂ©montre aussi que des Ă©tapes-clĂ©s du dĂ©veloppement (comme la sĂ©lection nĂ©gative) peuvent ĂȘtre des cibles thĂ©rapeutiques et sont actionnables malgrĂ© l’accumulation d’altĂ©rations gĂ©niques et Ă©pigĂ©nĂ©tiques dans les cellules cancĂ©reuses. Par ailleurs, j’ai Ă©tudiĂ© la frĂ©quence et l’impact pronostique des anomalies de la signalisation du TCR/prĂ©-TCR dans une grande sĂ©rie protocolaire de LAL-T de l’adulte (GRAALL-2003 et -2005). Les voies de prolifĂ©ration RAS/MAPK et PI3K/PTEN/AKT participent Ă  la signalisation du TCR/prĂ©-TCR et ont Ă©tĂ© rapportĂ©es comme dĂ©rĂ©gulĂ©es dans des sĂ©ries de LAL-T pĂ©diatriques. Dans notre sĂ©rie, j’ai identifiĂ© des dĂ©lĂ©tions/mutations perte de fonction de PTEN (12 %) ou des mutations activatrices de KRAS/N-RAS (11%) montrant que les anomalies du prĂ©-TCR/TCR sont frĂ©quentes dans les LAL-T puisqu’elles sont retrouvĂ©es dans 23% des cas. Les anomalies de RAS/PTEN sont associĂ©es Ă  un pronostic dĂ©favorable. Leur impact pronostique en fonction du statut mutationnel NOTCH1/FBXW7 (N/F) a Ă©galement Ă©tĂ© Ă©tudiĂ© et montre que les anomalies de RAS/PTEN abrogent le bon pronostic des mutations N/F. Ce travail permet de proposer une classification oncogĂ©nĂ©tique basĂ©e sur les anomalies de N/F et RAS/PTEN. Cette classification dĂ©finit les patients de bas risque comme ceux ayant N/F mutĂ© mais sans anomalie de RAS et PTEN (51 %) et les hauts risques qui regroupent tous les autres patients (49 %). Cette classification oncogĂ©nĂ©tique est dorĂ©navant utilisĂ©e dans le nouveau protocole GRAALL-2014 des LAL-T de l’adulte.T-cell acute lymphoblastic leukemias (T-ALL) are rare lymphoid neoplasms characterized by the proliferation of T lymphoblasts arrested at specific stages of maturation. Leukemic transformation of maturating thymocytes is caused by a multistep pathogenesis involving numerous genetic abnormalities that drive normal T cells into uncontrolled cell growth and clonal expansion. Depending on immunogenetic, T-ALLs are classified in 3 groups: immature, cortical (blocked around b-selection) and mature (CD3/TCR+) T-ALL. My work was to determine if activation and TCR signalling are involved in the biology of this disease. We demonstrate in T-ALL that, irrespective of the complex oncogenic abnormalities underlying tumor progression, experimentally induced, persistent TCR signalling has anti-leukemic properties and enforces a molecular and phosphoproteomic program resembling thymic negative selection, a major developmental event in normal T cell development. Using mouse models of T-ALL, we show that induction of TCR signalling by high affinity self-peptide/MHC or treatment with monoclonal antibodies to the CD3e chain (anti-CD3) causes massive leukemic cell death. Importantly, anti-CD3 treatment hampered leukemogenesis in mice transplanted with either mouse or patient-derived T-ALLs. These data provide a strong rationale for targeted therapy based on anti-CD3 treatment of TCR-expressing T-ALL patients and demonstrate that endogenous developmental checkpoint pathways are amenable to therapeutic intervention in cancer cells. Besides, I studied frequency and prognostic impact of anomalies concerning pre-TCR/TCR signalling in a large cohort of adult T-ALL included in GRAALL trials. RAS/MAPK and PI3K/PTEN/AKT pathways are involved in pre-TCR/TCR signalling and are reported as deregulated in pediatric T-ALL. I identified deletion/mutation loss-of-function of PTEN (12%) and activating mutations of KRAS/N-RAS (11%) in 23% of patients. These anomalies predict poor outcome and abrogate the good prognosis of NOTCH1/FBXW7 mutations. We proposed a purely genetic stratification of patients based on N/F/RAS/PTEN status, identifying low-risk patients (51%) with N/F mutations without RAS/PTEN anomalies and high-risk patients (49%) composed by the remaining cohort. This stratification will be used for the next protocol of adult-T-ALL
    • 

    corecore