98 research outputs found

    Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons

    Full text link
    The crossover from two- to three-dimensional critical behavior of nearly antiferromagnetic itinerant electrons is studied in a regime where the inter-plane single-particle motion of electrons is quantum-mechanically incoherent because of thermal fluctuations. This is a relevant regime for very anisotropic materials like the cuprates. The problem is studied within the Two-Particle Self-Consistent approach (TPSC), that has been previously shown to give a quantitative description of Monte Carlo data for the Hubbard model. It is shown that TPSC belongs to the nn\rightarrow \infty limit of the O(n)O\left( n\right) universality class. However, contrary to the usual approaches, cutoffs appear naturally in the microscopic TPSC theory so that parameter-free calculations can be done for Hubbard models with arbitrary band structure. A general discussion of universality in the renormalized-classical crossover from d=2d=2 to d=3d=3 is also given.Comment: Revtex, 23 pages + 6 postcript figures (with epsfile

    A biochemical and ultrastructural evaluation of the type 2 Gaucher mouse

    Get PDF
    Gaucher mice, created by targeted disruption of the glucocerebrosidase gene, are totally deficient in glucocerebrosidase and have a rapidly deteriorating clinical course analogous to the most severely affected type 2 human patients. An ultrastructural study of tissues from these mice revealed glucocerebroside accumulation in bone marrow, liver, spleen, and brain. This glycolipid had a characteristic elongated tubular structure and was contained in lysosomes, as demonstrated by colocalization with both ingested carbon particles and cathepsin D. In the central nervous system (CNS), glucocerebroside was diffusely stored in microglia cells and in brainstem and spinal cord neurons, but not in neurons of the cerebellum or cerebral cortex. This rostralcaudal pattern of neuronal lipid storage in these Gaucher mice replicates the pattern seen in type 2 human Gaucher patients and clearly demonstrates that glycosphingolipid catabolism and/or accumulation varies within different brain regions. Surprisingly, the cellular pathology of tissue from these Gaucher mice was relatively mild, and suggests that the early and rapid demise of both Gaucher mice and severely affected type 2 human neonates may be the result of both a neurotoxic metabolite, such as glucosylsphingosine, and other factors, such as skin water barrier dysfunction secondary to the absence of glucocerebrosidase activity

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF
    Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that Currently, biosurfactants are unable to compete economically with chemically synthesized compounds in the market due to high production costs. Once the genes required for biosurfactant production have been identified, they can be placed under the regulation of strong promoters in nonpathogenic, heterologous hosts to enhance production. The production of rhamnolipids could be increased by cloning both the rhlAB rhamnosyltransferase genes and the rhlRI quorum sensing system into a suitable bacterium such as E. coli or P. putida and facilitate rhamnolipid production. Biosurfactants can also be genetically engineered for different industrial applications assuming there is a strong understanding of both the genetics and the structure-function relationships of each component of the molecule. Genetic engineering of surfactin has already been reported, with recent papers describing the creation of novel peptide structures from the genetic recombination of several peptide synthetases. Recent application of dynamic metabolic engineering strategies for controlled gene expression could lower the cost of fermentation processes by increasing the product formation. Therefore, by integrating a genetic circuit into applications of metabolic engineering the biochemical production can be optimized. Furthermore, novel strategies could be designed on the basis of information obtained from the studies of quorum sensing and biosurfactants produced suggesting enormous practical applications.</p

    X-chromosome and kidney function: evidence from a multi-trait genetic analysis of 908,697 individuals reveals sex-specific and sex-differential findings in genes regulated by androgen response elements

    Get PDF
    X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.</p

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
    corecore