93 research outputs found

    Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway

    Get PDF
    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog

    Is My Network Module Preserved and Reproducible?

    Get PDF
    In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved) in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservation statistics are defined for a general network (defined by an adjacency matrix) while others are only defined for a correlation network (constructed on the basis of pairwise correlations between numeric variables). Our applications show that the correlation structure facilitates the definition of particularly powerful module preservation statistics. We illustrate that evaluating module preservation is in general different from evaluating cluster preservation. We find that it is advantageous to aggregate multiple preservation statistics into summary preservation statistics. We illustrate the use of these methods in six gene co-expression network applications including 1) preservation of cholesterol biosynthesis pathway in mouse tissues, 2) comparison of human and chimpanzee brain networks, 3) preservation of selected KEGG pathways between human and chimpanzee brain networks, 4) sex differences in human cortical networks, 5) sex differences in mouse liver networks. While we find no evidence for sex specific modules in human cortical networks, we find that several human cortical modules are less preserved in chimpanzees. In particular, apoptosis genes are differentially co-expressed between humans and chimpanzees. Our simulation studies and applications show that module preservation statistics are useful for studying differences between the modular structure of networks. Data, R software and accompanying tutorials can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation

    A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis

    Get PDF
    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general

    Holoprosencephaly

    Get PDF
    Holoprosencephaly (HPE) is a complex brain malformation resulting from incomplete cleavage of the prosencephalon, occurring between the 18th and the 28th day of gestation and affecting both the forebrain and the face. It is estimated to occur in 1/16,000 live births and 1/250 conceptuses. Three ranges of increasing severity are described: lobar, semi-lobar and alobar HPE. Another milder subtype of HPE called middle interhemispheric variant (MIHF) or syntelencephaly is also reported. In most of the cases, facial anomalies are observed in HPE, like cyclopia, proboscis, median or bilateral cleft lip/palate in severe forms, ocular hypotelorism or solitary median maxillary central incisor in minor forms. These latter midline defects can occur without the cerebral malformations and then are called microforms. Children with HPE have many medical problems: developmental delay and feeding difficulties, epilepsy, instability of temperature, heart rate and respiration. Endocrine disorders like diabetes insipidus, adrenal hypoplasia, hypogonadism, thyroid hypoplasia and growth hormone deficiency are frequent. To date, seven genes have been positively implicated in HPE: Sonic hedgehog (SHH), ZIC2, SIX3, TGIF, PTCH, GLI2 and TDGF1. A molecular diagnosis can be performed by gene sequencing and allele quantification for the four main genes SHH, ZIC2, SIX3 and TGIF. Major rearrangements of the subtelomeres can also be identified by multiplex ligation-dependent probe amplification (MLPA). Nevertheless, in about 70% of cases, the molecular basis of the disease remains unknown, suggesting the existence of several other candidate genes or environmental factors. Consequently, a "multiple-hit hypothesis" of genetic and/or environmental factors (like maternal diabetes) has been proposed to account for the extreme clinical variability. In a practical approach, prenatal diagnosis is based on ultrasound and magnetic resonance imaging (MRI) rather than on molecular diagnosis. Treatment is symptomatic and supportive, and requires a multidisciplinary management. Child outcome depends on the HPE severity and the medical and neurological complications associated. Severely affected children have a very poor prognosis. Mildly affected children may exhibit few symptoms and may live a normal life

    The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats.

    Get PDF
    Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 \ub5g/2 \ub5l, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit

    Enriched Monolayer Precursor Cell Cultures from Micro-Dissected Adult Mouse Dentate Gyrus Yield Functional Granule Cell-Like Neurons

    Get PDF
    BACKGROUND: Stem cell cultures are key tools of basic and applied research in Regenerative Medicine. In the adult mammalian brain, lifelong neurogenesis originating from local precursor cells occurs in the neurogenic regions of the hippocampal dentate gyrus. Despite widespread interest in adult hippocampal neurogenesis and the use of mouse models to study it, no protocol existed for adult murine long-term precursor cell cultures with hippocampus-specific differentiation potential. METHODOLOGY/PRINCIPAL FINDINGS: We describe a new strategy to obtain serum-free monolayer cultures of neural precursor cells from microdissected dentate gyrus of adult mice. Neurons generated from these adherent hippocampal precursor cell cultures expressed the characteristic markers like transcription factor Prox1 and showed the TTX-sensitive sodium currents of mature granule cells in vivo. Similar to granule cells in vivo, treatment with kainic acid or brain derived neurotrophic factor (BDNF) elicited the expression of GABAergic markers, further supporting the correspondence between the in vitro and in vivo phenotype. When plated as single cells (in individual wells) or at lowest density for two to three consecutive generations, a subset of the cells showed self-renewal and gave rise to cells with properties of neurons, astrocytes and oligodendrocytes. The precursor cell fate was sensitive to culture conditions with their phenotype highly influenced by factors within the media (sonic hedgehog, BMP, LIF) and externally applied growth factors (EGF, FGF2, BDNF, and NT3). CONCLUSIONS/SIGNIFICANCE: We report the conditions required to generate adult murine dentate gyrus precursor cell cultures and to analyze functional properties of precursor cells and their differentiated granule cell-like progeny in vitro

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs

    Distribution of bone morphogenetic protein and bone morphogenetic protein receptor transcripts in the rodent nervous system and up-regulation of bone morphogenetic protein receptor type II in hippocampal dentate gyrus in a rat model of global cerebral ischemia.

    No full text
    Bone morphogenetic proteins belong to the transforming growth factor-beta superfamily and act through serine/threonine kinase type I and type II receptors such as bone morphogenetic protein receptor type I and type II. In order to further understand the roles that these factors exert in the nervous system, we have examined the expression pattern of seven bone morphogenetic proteins and bone morphogenetic protein receptor type I and II transcripts in the brain and spinal cord of rodent. Whereas bone morphogenetic protein receptor type I expression was low in rat brain, in situ hybridization studies performed with specific digoxigenin-labelled riboprobes revealed the presence of bone morphogenetic protein receptor type II-positive cells throughout the brain, with a notable localization in dopaminergic cells of the substantia nigra. Bone morphogenetic protein receptor type II transcripts were also expressed by large motoneuron-like cells located in the ventral horn of the spinal cord and by sensory neurons of dorsal root ganglia. In addition, we observed a significant up-regulation of bone morphogenetic protein receptor type II in the granule cells of the dentate gyrus 48 h after transient global cerebral ischemia in rat suggesting that modulation of this receptor intervenes during neuronal plasticity or repair that occur upon brain injury. Among the potential ligands for this receptor, bone morphogenetic protein-6 and bone morphogenetic protein-7 were expressed in meninges and the choroid plexus, while bone morphogenetic protein-4-expressing cells were spatially and temporally regulated in myelinated structures during development and in the adult suggesting its expression in oligodendrocytes.These data clearly indicate that besides their roles in bone and embryonic tissues, bone morphogenetic proteins and their receptors may have also important functions in adult neural tissues
    corecore