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Highlights 

 

- An inhibitor of kynurenine-3-monoxygenase was administered to pregnant female rats 

- Adult offspring at postnatal day 60 (P60) showed alterations in synaptic plasticity 

- Expression of GluN2A, sonic hedgehog and other developmental proteins were changed 

- Most earlier protein changes had disappeared with no changes in RNA or learning tasks 

- Prenatal kynurenine pathway inhibition produces persistent synaptic and protein changes  
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Abstract 

During early brain development, NMDA receptors are involved in cell migration, 

neuritogenesis, axon guidance and synapse formation, but the mechanisms which 

regulate NMDA receptor density and function remain unclear. The kynurenine pathway of 

tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic 

acid) at NMDA receptors and we have previously shown that inhibition of the pathway 

using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces 

rapid changes in protein expression in the embryos and effects on synaptic transmission 

lasting until postnatal day 21 (P21). The present study sought to determine whether any of 

these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the 

litter was allowed to develop to P60 when some offspring were euthanised and the brains 

removed for examination. Analysis of protein expression by western blotting revealed 

significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic 

protein sonic hedgehog (31%), with a 29% increase in expression of doublecortin, a 

protein associated with neurogenesis. No changes were seen in mRNA abundance using 

qRT-PCR. Neuronal excitability was normal in the CA1 region of hippocampal slices but 

paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount 

of long-term potentiation was decreased by 49% in treated pups and recovery after low 

frequency stimulation was delayed. The results not only strengthen the view that basal, 

constitutive kynurenine metabolism is involved in normal brain development, but also show 

that changes induced prenatally can affect the brains of adult offspring and those changes 

are quite different from those seen previously at weaning (P21). Those changes may be 

mediated by altered expression of NMDAR subunits and sonic hedgehog. 

 

Key-words:-  
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Introduction 

   There is increasing interest in the role of epigenetic modification in the early 

development of the nervous system. A wide range of factors can modify brain 

development after foetal or early postnatal exposure, including diet, stress, therapeutically 

used medicines and environmental agents. There is relatively little information, however, 

on the mechanisms by which such external influences induce changes in brain 

development. 

   One possibility is that changes are induced in the activation of glutamate receptors for N-

methyl-D-aspartate (NMDA), since these are known to be intimately involved in early 

phases of brain development. NMDA receptors play key roles in the initial formation and 

guidance of axon branches, the establishment and stabilization of synaptic contacts and 

the induction and maintenance of dendritic spines (Heng et al., 1999; Cuppini et al., 1999; 

Rajan & Cline 1998; Colonnese et al., 2005; Ernst et al., 1998; Simon et al., 1992; Udin & 

Grant 1999; Alvarez et al., 2007; Ultanir et al., 2007). These and other aspects of neuronal 

and synaptic development ultimately determine synaptic function and plasticity in the 

mature, postnatal, offspring (Fagiolini et al., 2003; Iwasato et al., 2000; Myers et al., 2000; 

Ramoa et al., 2001). 

     In addition, antagonists acting at NMDA receptors prevent many of these neuro-

developmental processes and, when administered during late foetal or early postnatal life, 

increase the natural loss of neurons and synapses (Dikranian et al., 2001; Ikonomidou et 

al., 1999; Vincent et al., 2004; Harris et al., 2003). The neuronal and synaptic disruption 

produced by exogenously administered NMDA receptor antagonists results in profound 

abnormalities of neuronal development, brain structure and behaviour reminiscent of those 

seen in schizophrenia (Harris et al., 2003; du Bois & Huang 2007). However, previous 

studies do not address the question of whether manipulating physiological, endogenous 



 5 

factors affecting NMDA receptor function could also result in disordered neuronal 

development. 

   One potential method for modulating the activation of NMDA receptors by endogenous 

ligands is to interfere with the kynurenine pathway. This pathway is the major route for the 

metabolism of tryptophan and generates quinolinic acid, a selective agonist at NMDA 

receptors (Stone & Perkins 1981; Stone & Darlington 2002) as well as kynurenic acid, 

which is an antagonist at all ionotropic glutamate receptors, though with greatest potency 

at NMDA receptors (Perkins & Stone 1982; Stone et al. 2013). Kynurenic acid may also 

block nicotinic receptors in the CNS (Hilmas et al 2001) although this has been disputed 

(Mok et al., 2009; Dobelis et al., 2012).  The ratio between the endogenous levels of 

quinolinic acid and kynurenic acid will, therefore, influence neuronal excitability and 

viability. 

   In this study we have used an inhibitor of kynurenine-3-monoxygenase (KMO) to alter 

the relative concentrations of endogenous quinolinic acid and kynurenic acid. Previous 

work has shown that the major effect of inhibition by 3,4-dimethoxy-N-[4-(3-

nitrophenyl)thiazol-2-yl]-benzenesulphonamide (Ro61-8048; Rover et al., 1997) is to raise 

the levels of kynurenic acid in the blood and brain (Rover et al., 1997; Cozzi et al., 1999; 

Clark et  al., 2005; Forrest et al., 2013). The compound was administered to gestating 

female rats and the offspring were allowed to develop normally until day 60 (P60). The 

effects of the exposure to Ro61-8048 were then examined on hippocampal synaptic 

transmission and plasticity in the brains of those P60 animals. It is around this age that 

many studies have shown behavioural changes resulting from prenatal infection or mimetic 

agents (Fatemi et al., 2005; Iwasato et al., 2000; Zuckerman & Weiner 2005) and we 

therefore tested behavior in the open-field test of exploration and a step-down inhibitory 

avoidance task of learning. Since many of the neurodevelopmental functions of NMDA 

receptors are probably mediated via their interactions with cell proliferation, axonal 
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guidance and cytoskeletal molecules which are crucial to the development and 

maintenance of synaptic contacts (Fagiolini et al., 2003; Hoffman et al., 2001; Ramoa et 

al., 2001; Ozaki et al., 2000), we have also included an examination of the expression of 

representative proteins as well as the mRNA for key proteins by qRT-PCR. The target 

molecules examined are all known to play key roles in neuronal development, neurite 

outgrowth, synapse formation and neurotransmitter release. They include components of 

the synaptic vesicle and neurotransmitter release machinery such as synaptophysin, 

Vesicle Associated Membrane Protein-1 (VAMP-1; synaptobrevin) and the vesicular 

release calcium sensor synaptotagmin. As markers of axon guidance and synapse 

formation, the proteins EphA4, Unc5H1 and Unc5H3 were studied, in addition to the 

cytoskeletal modulators RhoA and RhoB, the glutamate complex component Post-

Synaptic Density molecule-95 (PSD-95) and tyrosine hydroxylase (TH).  

    We have also examined the expression of two proteins that might be important 

indicators of the basic mechanisms underlying the observed changes:  the interneuronal 

maturation molecule doublecortin and the morphogenetic protein sonic hedgehog. 

     Finally, whereas the juvenile (P21) study was performed on whole cerebral 

hemispheres, the present, more detailed analysis of adults at P60 was focussed on the 

hippocampus. 

 

Experimental Procedures 

   This study was carried out according to the regulations of the Animals (Scientific 

Procedures) act 1986 of the UK, administered and monitored by the Home Office. Male 

and female Wistar rats were housed together for mating and inspected daily for the 

occurrence of a vaginal plug. Thereafter, the pregnant females were housed alone with 

free access to food and water.  
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     To inhibit tryptophan oxidation along the kynurenine pathway we used 3,4-dimethoxy-

N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) (Rover et al., 1997). 

This compound is an inhibitor of kynurenine-3 monoxygenase (KMO), a key enzyme in the 

pathway which shifts the balance of tryptophan metabolism away from the generation of 

the NMDA receptor agonist, quinolinic acid, towards the antagonist, kynurenic acid (Cozzi 

et al., 1999; Clark et al., 2005; Forrest et al., 2013). From those earlier studies we 

identified the dose of 100mg/kg (i.p.) as one which can be administered repeatedly to the 

same animal (Clark et al., 2005; Rodgers et al., 2009). In order to maximise the period of 

development during which the activity of the kynurenine pathway is affected, we 

administered this compound to the pregnant dam at days E14, E16 and E 18 of gestation.  

Groups of control animals were injected with the saline vehicle. In most experiments, 

gestation was allowed to proceed normally, with neonates being removed from the home 

cage for euthanasia followed by removal of the brain when adult at postnatal day (P60). In 

an earlier study of postnatal animals at the time of weaning (P21) we confirmed that 

prenatal exposure to Ro61-8048 had the predicted effects on levels of kynurenine and 

kynurenic acid, concentrations of both being increased between 10 and 100-fold in the 

maternal blood and embryo brains (Forrest et al., 2013). 

 

Electrophysiology 

     Electrophysiological studies were performed on male and female animals which were 

allowed to wean and grow under normal conditions to 60 days of age (P60 animals) with 

food and water available ad libitum. Animals were killed by administration of an overdose 

of urethane (2.5g /kg rat delivered as an i.p. injection of a 25% solution in water) followed 

by cervical dislocation. The brain was removed into ice-cold artificial cerebrospinal fluid 

(aCSF) of composition: (in mM) NaCl 115; KH2PO4  2.2; KCl  2; MgSO4  1.2; NaHCO3 

25; CaCl2 2.5; glucose 10, gassed with 5%CO2 in oxygen. The hippocampi were rapidly 
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removed and chopped into 450m transverse slices using a McIlwain tissue chopper. The 

slices were preincubated at room temperature for at least 1 hour in a water-saturated 

atmosphere of 5%CO2 in O2 before individual slices were transferred to a 1 ml capacity 

superfusion chamber for recording. Slices were superfused at 28-30C using aCSF at a 

flow rate of 3-4 ml/min. A concentric bipolar electrode was used for stimulation of the 

Schaffer collateral and commissural fibres in stratum radiatum, using stimuli delivered at 

0.1 Hz or 0.05 Hz with a pulse width of 50-300 s, adjusted to evoke a response amplitude 

of approximately 70% of maximum to allow increases or decreases in size to be detected. 

Extracellular recordings were made via glass microelectrodes containing 1M NaCl (tip 

diameter approximately 2m, DC resistances 2-5M) with the tip positioned under 

microsopic visualisation in the stratum radiatum of the CA1 region to evoke field excitatory 

postsynaptic potentials (fEPSPs). Potentials were amplified, digitised and stored on 

computer via a CED (Cambridge Electronic Design, Cambridge, UK)) micro1401 interface. 

The fEPSPs were routinely quantified by measurement of the early positive slope of the 

potential, using Signal software (CED, Cambridge, UK). The axonal volley was monitored 

wherever it was possible to distinguish it clearly from the fEPSP in order to ensure that no 

change occurred during the experiments.  

     Once placed into the recording chamber, the recording of fEPSPs was allowed to 

stabilise and a minimum period of 10min obtained at a stable baseline. The degree of LTP 

and LTD was quantified by measuring the size of the evoked potentials once a post-

stimulation plateau had been obtained and comparing with the size of the potential before 

stimulation.  

     Paired-pulse interactions were assessed in slices not used for the examination of LTP 

or LTD, using pairs of stimuli S1 and S2 with inter-stimulus intervals of 10 -100ms. In the 

case of fEPSPs the 10ms interval resulted in a substantial overlap between successive 

potentials and an electronic subtraction was performed in which a single evoked potential 
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at time S1 was subtracted from a subsequent paired-pulse response to reveal the true 

magnitude of the response to S2. 

 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

     Total RNA was isolated from snap frozen, whole hippocampi removed from P60 rats 

(as previously described, n = 3/litter, n = 3 litters/treatment group, n = 9 control and n = 9 

treated) using the Qiagen RNeasy lipid mini kit with DNaseI treatment, according to the 

manufacturer’s instructions. The RNA concentration of each sample was determined using 

a NanoDrop (Thermo Scientific) and the integrity of each mRNA sample was assessed 

using the Agilent 2100 Bioanalyser (Glasgow Polyomics Facility, University of Glasgow). 

Only samples with RNA integrity number (RIN) values greater than 8 were used (values 

ranged from 8.70 - 9.30). 

     First strand cDNAs were synthesised from total RNA using random hexamers and 

Superscript III Reverse transcriptase in the VILO cDNA synthesis kit (Life Technologies) 

following the manufacturer’s instructions. 

     qRT-PCR was carried out in an ABI cycler (SDS7000) using the TaqMan Gene 

expression assay system for the following assays: doublecortin (Dcx; Rn00670392_m1), 

sonic hedgehog (Shh; Rn00568129_m1), NMDA receptor subunit 2A (Grin2a; 

Rn00561341_m1) and NMDA receptor subunit 2B (Grin2b; Rn00680474_m1), (Applied 

Biosystems). In addition, four reference genes were used: beta actin (Actb; 

Rn00667869_m1), glyceraldehyde-3-phosphate dehydrogenase (Gapdh; 

Rn01775763_g1), beta-2 microglobulin (B2m; Rn00560865_m1) and 18S ribosomal RNA 

(Rn18s; Mm03928990_g1), (Applied Biosystems).  

 

Immunoblotting 
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    Brain sample homogenates were prepared in RIPA buffer (50mM Tris, 150mM NaCl, 

0.1% SDS, 0.5% Triton X-100, 1% IGEPAL, and a Roche complete protease inhibitor 

tablet) and centrifuged at 18000 g for 5 min at 4oC. Supernatants were collected for protein 

concentration determination using the Bio-Rad Coomassie Blue protein assay (Bio-Rad, 

Hemel Hempstead, UK). Samples were then normalised to 10g and prepared as; 65% 

protein sample, 25% sample buffer and 10% reducing agent (Life Technologies, Paisley, 

UK) and heated at 70oC for 10 min. The protein samples were loaded onto NuPAGE 

Novex 4-12% Bis-Tris (1.0mm) 15 lane gels (Life Technologies, Paisley, UK) and run at 

150 volts for 80 min to separate proteins according to their molecular weight. SeeBlue pre-

stained standard (Life Technologies, Paisley, UK) was included on each gel as a 

molecular weight marker. The separated proteins were then blotted onto Invitrolon 

poly(vinylidene difluoride) membranes (Life Technologies, Paisley, UK) at 30V for 60 min. 

The membranes were blocked for 1h in 5% non-fat dried milk solution in Tris-buffered 

saline containing 0.05% Tween (TBST) before overnight incubation at 4oC with the 

appropriate primary antibody (diluted in 5% milk-TBST). Membranes were then washed 3 

times for 15 min with TBST and incubated with the appropriate horseradish peroxidase 

(HRP) conjugated secondary antibody (prepared in 5% milk-TBST) for 1h at room 

temperature. Following secondary antibody incubation, blots were washed 3 times for 15 

min with TBST then visualised using Enhanced Chemiluminescence Plus detection kit (GE 

Healthcare, Chalfont St Giles, UK).  

    Western blot analysis was carried out using the following primary antibodies:-  

From Millipore, Watford, UK:- GluN1 (mouse monoclonal, 05-432, 1 : 1000 dilution); 

tyrosine hydroxylase (mouse monoclonal, MAB5280, 1 : 10000 dilution), synaptophysin 

(mouse monoclonal, MAB368, 1 : 40000 dilution) 
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From R&D Systems, Abingdon, UK:- GluN2A (rabbit polyclonal, PPS012, 1:5,000 dilution);  

GluN2B (rabbit polyclonal, PPS013, 1:5,000); VAMP-1/synaptobrevin (goat polyclonal, 

AF4828, 1 : 10,000 dilution), synaptotagmin (MAB 43641, 1:5,000 dilution);  

From Cell Signalling, New England Biolabs, Hitchin, Herts, UK:- PSD-95 (rabbit 

monoclonal, #3450, 1:10,000 dilution); 

From Santa Cruz, Insight Biotechnology, Wembley, UK:- doublecortin (goat polyclonal, sc-

8066, 1:1000 dilution); -synuclein (mouse monoclonal, sc-65500, 1:1000 dilution);  actin 

(goat polyclonal, sc-1615, 1:10,000 dilution); DISC-1 (goat polyclonal, sc-47990, 1:1000 

dilution); Unc5H1 (goat polyclonal, sc-67902, 1:1000 dilution), Unc5H3 (goat polyclonal, 

sc-54442, 1:1000 dilution), SHH (goat polyclonal, sc-1194, 1:1000 dilution); NFB (rabbit 

polyclonal, sc-372, 1:5,000 dilution); COX-2 (goat polyclonal, sc-1745, 1:1000 dilution); 

RhoA (mouse monoclonal, sc-418, 1:1,000 dilution); RhoB (mouse monoclonal, sc-8048, 

1:1000 dilution); EphA4 (rabbit polyclonal, sc-921, 1:5000); PCNA (mouse monocloncal, 

sc-56, 1:1000 dilution; 5HT-2c (mouse monoclonal, sc-17797, 1:1000 dilution)  

    The following secondary HRP-conjugated antibodies were used at 1 : 5000 dilution: 

goat anti-rabbit HRP (12-348) (Millipore, Watford, UK); donkey anti-goat HRP (sc-2020) 

and goat anti-mouse (sc-2005) (Santa Cruz, Insight Biotechnology, Wembley, UK) 

 

Behaviour 

   All experiments were performed in accordance with the Review Committee of the 

Veterinary School (CICUAL), University of Buenos Aires and the International Brain 

Research Organization (IBRO), and are in compliance with the U.S. National Institutes of 

Health Guide for Care and Use of Laboratory Animals (publication no. 85-23, revised 

1985) and the European Communities Council Directive of 24 November 1986 

(86/609/EEC).   
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   Wistar rats were treated as previously described (see Methods above); pregnant Wistar 

rats were injected i.p. either with Ro61-8048 or the saline vehicle. At P21 female and male 

rats (35-40 g) bred in-house were separated and maintained in groups of 5-6 per cage, 

under a 12 h light/dark inverted cycle with water and food available ad libitum until P60 

(180-220g). 

     

Open field test of locomotor and exploratory activities 

   To evaluate possible changes of locomotor activity and/or exploratory behaviour, P60 

female and male rats – born from mothers treated with Ro61-8048 or saline - were initially 

allowed to freely explore an open square field (measuring 60.0 cm long × 60.0 cm wide × 

50.0 cm high) for 5 min (OF1). The floor of this arena was divided into 16 sectors of 15.0 

cm × 15.0 cm each, and the number of rearings, groomings and crossings from one sector 

to another per minute were counted in the initial 5 minutes session (OF1) (carried out at 

about 3 h before avoidance training); the second 5 minutes session (OF2) was performed 

in the following day, about 2 h after the avoidance test, between 27 and 28 h from the first 

OF session. 

 

Step-down inhibitory avoidance 

   Effects on learning and memory were tested using a step-down inhibitory avoidance 

model of learning in rats as described previously (Harvey et al., 2012). 

    Rats were trained in the step-down inhibitory avoidance task at about 3 h after the first 

open field session. A rat was placed on an elevated isolated platform (25 x 7 x 2.5 cm 

high) at the left side of an acrylic box (50 x 25 x 25 cm), with the floor made of parallel 

bronze bars (0.5 cm calibre, 0.5 cm apart). The latency was measured for the animal to 

step-down from the platform, placing all four paws on an electrifiable grid (training latency), 

at which point the animal was given a 2.0 sec, 0.75 mA scrambled foot-shock, causing it to 
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return to the platform or remain on the grid from which it was immediately removed and 

returned to its home-box.  

     In the next day (about 20 h after the training session), a retention test was performed in 

which the step-down latency (test latency) was recorded up to a maximum of 300 sec, but 

no shock was delivered. The difference between test and training latencies was taken as 

an indication of retention: a better memory should result in a higher test latency and a 

greater difference from the training latency  

 

Data analysis and statistics 

   Immunoblotting: All western blots were quantified using the Image J software 

(http://rsb.info.nih.gov/ij/) and comparisons were made statistically between groups of pups 

born to mothers treated with Ro61-8048 and groups born to mothers injected with saline 

vehicle. This protocol allowed the use of a t-test to examine differences between the two 

groups. To control for variations in the total amount of protein loaded onto gels all samples 

were examined after staining with Ponceau S stain. In addition, actin levels were examined 

in each series of blots and the ratio taken of the intensity of target protein to the intensity of 

actin. A probability value of 0.05 was adopted as the criterion for significance. Actual p-

values are indicated when >0.0001. 

    Electrophysiology: Data from hippocampal slices are presented as mean ± standard 

error. Baseline values were obtained from a stable 10 min period of evoked potential size 

prior to the addition of any drugs, with the first of those potentials being defined as 100%. 

This allowed the 10 min pre-drug period to provide an indication of baseline variance. 

Repeated measures ANOVA were used for statistical comparisons followed by the 

Bonferroni post hoc test for individual comparisons.  

     qRT-PCR: PCR Ct values and reaction efficiencies were obtained from the raw 

fluorescent data using LinReg PCR (Ramakers et al., 2003). TaqMan assay reaction 

http://rsb.info.nih.gov/ij/
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efficiencies were Dcx 1.802, Shh 1.876, Grin2a 1.858, Grin2b 1.866, Actb 1.807, Gapdh 

1.729, B2m 1.866 and Rn18s 1.781. Samples were run in triplicate and Ct outliers were 

determined using the Grubb’s test http://graphpad.com/quickcalcs/Grubbs). Significant Ct 

outliers (P>0.05) were removed before statistical analysis. The mean Ct values for each 

sample were analysed using REST 2009 v2.0.13 (Pfaffl et al., 2002). REST calculates P 

values on the basis of 2000 permutations of a pair-wise fixed reallocation randomisation 

test in which Ct values for the reference and target gene are reallocated to sample and 

control groups and calculates the resulting expression ratios on the basis of the mean 

values.     

     Behaviour: For the behavioural tasks, non-parametric statistics were used because an 

upper time limit (300s) was specified for stepping-down from the platform in the avoidance 

task. Results are presented as medians with inter-quartile ranges (Q25 / Q75). Statistical 

differences between test latencies were evaluated using a Kruskal-Wallis ANOVA. When 

significant differences were found, training and test latencies in each group were 

compared by the Wilcoxon test. Latencies for both training and test sessions, and 

differences between them (test minus training latencies) were compared between groups 

(Ro61-8048 vs. saline) using the Mann-Whitney 'U' test, to evaluate effects of drug 

treatment. 

   Data from the open-field exploration task are expressed as the medians of the number of 

crossings or rearings performed during a 5 min session (OF1 or OF2) by animals exposed 

prenatally to vehicle (OF1 control and OF2 control) or Ro61-8048 (OF1 treated and OF2 

treated). Groups were compared using Kruskal-Wallis ANOVA.  When significant 

differences were found, the numbers of crossings or rearings in each group were 

compared by the Wilcoxon test. Further comparison between groups (Ro61-8048 vs. 

vehicle) was made using the Mann-Whitney 'U' test. 

 

http://graphpad.com/quickcalcs/Grubbs
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Results 

Electrophysiology 

   Initial experiments on each hippocampal slice established the absolute levels of 

excitability by measuring the size of the fEPSP in stratum radiatum as the stimulus was 

increased from the threshold potential that elicited a discernible response (Fig. 1A). The 

slopes of the potentials were compared up to the stimulus level at which the first sign of a 

population spike indentation appeared in the fEPSP. There were no significant differences 

between any of the data points in the stimulus-response relationship between slices 

prepared from control animals and those from animals born to dams treated with Ro61-

8048 (Fig. 1A). 

     A similar analysis was performed for population spike amplitude (Fig. 1B), but no 

significant difference was detected between the stimulus response curves for control and 

Ro61-8048-exposed animals. 

    In order to obtain more detailed information about the pre- and post-synaptic function of 

synapses in these animals, pairs of stimuli were used, at interpulse intervals ranging from 

100ms (10Hz) to 10ms (100Hz), to examine the occurrence and magnitude of paired-pulse 

facilitation (PPF) and paired-pulse inhibition (PPI). At the 10ms interval there was too 

much overlap between the evoked fEPSPs to allow a direct comparison of the first 

(fEPSP1) and second (fEPSP2) potentials, and the Signal software was used to perform a 

digital subtraction of fEPSP1 from the paired-pulse potentials (Fig. 1Ca-e). While the 

overall profile of the potential ratios at varying interpulse intervals are similar between 

slices taken from control and Ro61-8048-treated animals, there was a significant 

difference between the fEPSP responses of the slices at the shortest interpulse interval of 

10ms (Fig. 1C). 
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   Digital subtraction was not necessary for the analysis of population spikes, for which the 

relatively rapid time course of the spike, together with the much greater degree of 

facilitation or inhibition, made the contribution of any overlap negligible. A similar 

relationship was found to that observed with fEPSPs, although control slices showed a 

significant degree of PPI at the 10ms interpulse interval as exemplified by the potentials 

illustrated in Fig. 1Da-d). In contrast, slices from Ro61-8048-exposed animals showed less 

facilitation at the 10ms interval compared with longer interpulse intervals, but no overall 

PPI, leading to a highly significant difference compared with the controls animals (Fig. 1D), 

and an exaggeration of the difference noted above with fEPSPs. 

   However, it is recognised that, primarily at smaller interpulse intervals, the nature of the 

interaction between potential pairs of population spikes is highly dependent on the 

frequency with which the pulse pairs are elicited. In view of the difference between the test 

and control slices at the 10ms interpulse interval, therefore, this relationship was examined 

further. It was found that, at increasing frequencies of paired-pulse presentation, control 

slices showed little change in the degree of PPI seen at 10ms (Fig. 1C,E), whereas in 

slices from Ro61-8048-treated animals the initial PPF was lost over a series of 5-10 

stimulus pairs, leaving PPI at higher presentation frequencies as illustrated in the 

potentials of Fig. 1Ea,b. The switch from facilitation to inhibition was sufficiently 

pronounced that a very significant difference was demonstrated at a paired-pulse 

frequency of 1Hz (Fig. 1E) as well as at the lower frequencies of 0.1 and 0.05Hz. 

 

Long-term potentiation 

   Two aspects of synaptic plasticity were examined in the slices - long-term potentiation 

(LTP) and long-term depression (LTD). LTP was tested using a burst of theta stimulation 

(5 bursts per second, for 2 seconds, of 4 stimuli delivered at 100Hz; Larson et al., 1986). 

In control slices this level of stimulation induced an increase of fEPSP amplitude which 
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reached a plateau after approximately 20min and was stable until the end of the recording 

period at 50min (Fig. 2A,B). In order to compare potential size at the plateau with their pre-

stimulation amplitude an analysis of variance was performed using the fEPSP slopes 

recorded over the 10min period before stimulation and between 40 to 50min after theta 

stimulation. In control animals this increase was statistically significant (F[19,80] = 17.462; p 

< 0.0001, n = 5) with an increase of 34.8% between the mean fEPSP slope at 0min (98.1  

3.5%) and that at 50min (133.0  5.8%; p = 0.0009, n = 5).   

     For slices prepared from animals subjected to Ro61-8048 administration in utero, a 

very similar temporal profile of LTP was obtained, but of a lower magnitude than in control 

slices (Fig. 2A,C). Analysis of variance confirmed that the fEPSP slopes were still 

significantly greater than the corresponding pre-stimulation level (F[19,80] = 2.248; p = 

0.0066, n = 5) with an increase of 17.7% between the mean fEPSP slope at 0min (97.3  

2.5%) and that at 50min (115.0  7.4%, p = 0.05, n = 5). A comparison of the fEPSP 

slopes of control and Ro61-8048-exposed slices between 45 and 50min after stimulation 

indicated that the LTP was very significantly smaller in treated animals compared with 

controls (F[19,80] = 4.98, p < 0.0001, n = 5) (Fig. 2A). 

  

Long-term depression  

   Previous studies of LTD in this laboratory have indicated that a clear depression of 

fEPSP slope can be obtained using a modification of the protocol published by Kemp and 

Bashir (1999). Stimulus trains of 3 pulses at 200Hz were delivered every second for 5mins 

(stim1, Fig. 2D), and the same protocol repeated 20mins later (stim2). In slices from 

control animals, a clear LTD was obtained in which the fEPSP slope between 30-40min 

after stim2 was very significantly lower than in the 10min baseline period preceding stim1 

(F[19,80] = 6.94, p<0.0001, n = 5 slices), with a reduction of 32.0% between the fEPSP at 

0min immediately preceding stim1 (102.7  6.1%) and the fEPSP at 40min following stim2 
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(69.7  5.6%; p = 0.004, n = 5) (Fig. 2D,E).   In comparison, the slices taken from animals 

exposed to Ro61-8048 showed a similar degree of LTD such that the potential size 

between 30-40 min after stim2 was reduced very significantly (F[19,80] = 16.25, p<0.0001, n 

= 5 slices) with a reduction of fEPSP slope by 42.3% between the potentials at 0min 

preceding stim1 (105.2  3.1%) and the mean potential recorded 40min after stim2 (63.0  

2.1%; p < 0.0001, n = 5) (Fig. 2D,F).  The level of LTD between 30-40min after stim2 was 

not significantly different between slices from control animals and those exposed to Ro61-

8048 (ANOVA, F[19,80] = 0.106, p > 0.99.) 

   There was, however, a difference in the time course of LTD development in the two 

groups (Fig. 2D). Slices from Ro61-8048-treated animals recovered more slowly from 

stim2 stimulation, and this was borne out by a comparison of the individual fEPSP slopes 

between 30 and 50min (0-20min after stim2). All points in this period between 31 and 

37min were significantly different at p < 0.001 (two-tailed t test, n = 5), while points 

between 38 and 40 mins were different at p<0.01. 

 

 

Adenosine sensitivity 

   While LTP and LTD are primarily dependent on postsynaptic phenomena, adenosine 

acts on A1 receptors located almost exclusively on presynaptic terminals, thus providing a 

relatively selective test of presynaptic function (Goncalves and Queiroz, 2008; Stone et al., 

2009). In order to determine whether Ro61-8048 treatment had produced any change 

specifically in presynaptic function, therefore, slices were exposed to 10 and 30M 

concentrations of adenosine perfused for 10min. This procedure reduced the slope of the 

fEPSP to a plateau level approximately 25 and 75% respectively below the baseline 

potential size in control animals (Fig. 3A-C). Using slices from animals exposed to Ro61-

8048, a similar degree of reduction was obtained, the magnitude of the responses to 
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adenosine being not significantly different from controls at either concentration tested (Fig. 

3D). 

    

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

    REST 2009 was used to analyse relative gene expression. B2m expression was 

significantly reduced in the Ro61-treated rats (p = 0.009). This reference gene was 

therefore excluded from further analysis. The reference genes used to analyse relative 

gene expression were Actb, Gapdh and Rn18s as these were not significantly different 

between control and treated rats. mRNA expression of Dcx, Shh, Grin2a and Grin2b 

transcripts did not change relative to Actb, Gapdh and Rn18s (Fig. 4).  

 

Protein expression 

     The range of proteins examined in this study was similar to that targetted in our 

previous study of animals at 21 days of age (Forrest et al., 2013). They included proteins 

known to be involved in neuronal migration, early axon guidance, dendritogenesis and the 

formation of spines and synaptic contacts. Significant differences were noted in the 

expression of three of these proteins, in marked contrast to the variety of changes seen at 

P21, where 9 of 20 proteins examined showed significant changes of expression.  

      In several cases proteins which had shown no change at P21 remained unchanged at 

P60. These included the presynaptic vesicular release protein synaptophysin (p = 0.57), 

the vesicle release calcium sensor synaptotagmin (p = 0.14) and Vesicle Associated 

Membrane Protein-1 (VAMP-1; synaptobrevin) (p = 0.41). There was also no evidence of 

change for the dependence receptors Unc5H1 (p = 0.24) and Unc5H3 (p = 0.29), which 

are dependent on the secreted paracrine protein family of netrins and which play crucial 

roles in establishing the balance between attraction and repulsion between growing axons, 

dendrites and postsynaptic targets. Similarly, the pro-inflammatory transcription factor 
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NFB as well as cyclo-oxygenase-2 (COX-2) - an important enzyme in generating the 

oxidative stress that accompanies tissue inflammation – were not different between test 

and control animals (p = 0.25 and p = 0.43 respectively).  

     In view of the role of NMDAR receptors for both synaptic development and function, 

particular importance was attached to the expression of the major receptor subunits 

especially since, at P21, there had been no change in GluN1 but very significant changes 

in the expression of both GluN2A and GluN2B subunits. In the present study, expression 

of the GluN2A subunit was significantly lower in P60 offspring exposed in utero to Ro61-

8048 compared with controls (Fig. 5A) and this was a decrease in expression whereas 

levels were increased at P21. No difference was detected in expression of GluN2B or 

GluN1 subunits (Figs. 5B, 5C). 

     The levels of several proteins with strong links to NMDA receptor function were 

examined but neither the GluN1 subunit (p = 0.20, Fig. 5C) nor postsynaptic density 

protein-95 (PSD-95)(p = 0.14, Fig. 5D) showed a clear change even though the latter had 

been significantly increased at the P21 age point. The two small GTPase enzymes RhoA 

and RhoB, which are involved in some of the plastic phenomena triggered by NMDA 

receptors (O’Kane et al., 2003) were similarly unchanged (p = 0.95, Fig. 5E; p = 0.31, not 

shown, respectively) even though there had been a very significant increase in RhoB at 

P21. 

      In other cases, such as the axon guidance and synapse formation receptor EphA4 (p = 

0.70, Fig. 5F) and Proliferating Cell Nuclear Antigen (PCNA, p = 0.19, not shown) changes 

seen at P21 had been resolved or compensated so that no significant difference was 

apparent by the age of P60. 

    There were, however, marked and highly significant differences in the expression of two 

of the proteins concerned with cell proliferation, differentiation and maturation, and which 

had shown altered expression in animals at the time of weaning (P21). Doublecortin, which 
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is associated with the undifferentiated state of cells and declines with differentiation, 

exhibited a clearly significant alteration in the pups exposed to Ro61-8048, with a 30% 

increase in expression compared with saline-treated animals (p = 0.03; Fig. 5G). This was 

very similar to the 30% increase seen in animals at P21. 

     The sonic hedgehog protein (Shh), was clearly detected in the adult hippocampus. 

Expression of this molecule was decreased significantly in the Ro61-8048-treated animals 

compared with controls (p = 0.05; Fig. 5H), a result again very close to that seen at P21. 

     Lastly, four proteins with a major relevance to dopaminergic neuronal systems were 

examined in this study: tyrosine hydroxylase (TH, p = 0.58), -synuclein (p = 0.52), 

Disrupted in Schizophrenia-1 (DISC-1, p = 0.89) and the 5HT2C receptor (p = 0.58), but 

none of these showed any change between treated and control animals in the 

hippocampus. 

 

Behaviour 

Open field exploration 

   Tests were performed on P60 rats after prenatal maternal administration of Ro61-8048. 

Animals were exposed twice to an open field arena on two consecutive days. As indicated 

in Fig. 6, there were no significant differences between the performance of control (n = 38) 

and Ro61-8048-treated (n = 53) offspring on their first exposure (OF1) to the arena, 

assessed either as the total number of line crossings (Fig. 6A) or the number of rearings in 

the 5min session (Fig. 6B) (OF1; p > 0.05, Mann-Whitney test). When tested in the arena 

at about 20 h later (OF2), both groups of animals showed a significant degree of 

habituation learning with fewer line crossings and rearings (Figs. 6AB) (p < 0.05, Wilcoxon 

signed rank test after Kruskal–Wallis ANOVA for non-parametric samples). Furthermore, 

the variables were recorded and compared every minute in the open field to assess short 

term recognition of the environment. In all groups the exploratory parameters decreased 
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during the session confirming that short term habituation to the arena was also preserved 

(Kruskal-Wallis followed by Dunn’s multiple comparison test, not shown).  

    

Step-down avoidance 

    In the inhibitory step-down avoidance task, animals in the control (n = 34) and treated (n 

= 50) groups showed a significant difference between latencies in training (TR) and test 

(TEST) sessions, the test latencies being significantly lower (Fig. 7A; Wilcoxon test), 

indicating that both groups learned the avoidance task and remembered it in the testing 

session 24 h later. There was no significant difference between the control and test groups 

in their response latencies in either the training or test sessions, indicating that Ro61-8048 

had not affected the initial acquisition or the subsequent memory consolidation and further 

recall of the task.  

     In order to exclude any confounding effect of gender factors on these results, a 

separate analysis was performed of male (Fig. 7B; control n = 20, treated n = 19) and 

female (Fig. 7C: control n = 14, treated n = 31) animals.  Although female rats showed 

greater variability in their response latencies, there remained no significant differences 

between control and treated groups. 

      

 

Discussion 

     We have reported previously that the administration of Ro61-8048 to pregnant rats 

rapidly produces a substantial increase of between 10 and 100-fold in the levels of 

kynurenine and kynurenic acid in the maternal blood and in the embryo brains within 

5hours (Forrest et al. 2013). After 24hours the maternal levels have normalised whereas 

they remain significantly elevated in the embryonic brain. It is likely, therefore, that the 

changes described previously at P21 and reported here for animals at P60 following the 
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same prenatal injection protocol result from the increased levels of these tryptophan 

metabolites. It is unlikely that changes were produced in the concentrations of quinolinic 

acid since previous work did not reveal any change in resting levels of this compound after 

Ro61-8048 (Chiarugi & Moroni, 1999; Clark et al., 2005). 

     It was also reported that the use of Ro61-8048 was not accompanied by any changes 

in the levels of pro-inflammatory cytokines such as interleukin-1, IL-1B, IL-6, tumour 

necrosis factor-, monocyte chemoattractant protein-1, macrophage inflammatory protein-

1, Regulated on Activation, Normal T cell expressed and secreted (RANTES), or 

interferon receptor (Forrest et al. 2013), confirming that activation of immune function was 

unlikely to contribute significantly to the observed results.  

 

Electrophysiology 

   While the various biochemical changes generated in the adult brain by exposure to 

Ro61-8048 in utero indicate that abnormalities of neurochemistry can be produced by 

changing the kynurenine environment during early brain development, those changes may 

not be sufficient to cause gross functional change. In order to assess the existence and 

degree of functional change we have analysed several basic aspects of hippocampal 

electrophysiology. 

   The results indicate that there are no apparent alterations to basic aspects of neuronal 

excitability and synaptic transmission since there were no differences between control and 

treated animals in the stimulus-response relationships for either fEPSPs or population 

spikes. These data also imply that there are no changes in the relationship between 

presynaptic transmitter release and postsynaptic excitability (E-S coupling).  

   There are, however, clearly demonstrable changes in some aspects of synaptic 

plasticity. While slices from control and treated animals exhibit closely similar PPF across 

the range of interpulse intervals from 20 to 100ms, marked differences are apparent at the 
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10ms interval. The importance of this observation lies in the different mechanisms 

underlying PPF and PPI. The latter is believed to result from the short-lived depletion of 

synaptic vesicles following the first stimulus (Rosenmund and Stevens, 1996; Wang and 

Kaczmarek, 1998), whereas PPF is believed to result from the accumulation of residual 

calcium within synaptic terminals, leading to increased transmitter release and an 

increased size of the second potential of the pair (Zucker et al., 1991). A reduced, or 

absent, PPI at the smallest interpulse interval would, therefore, suggest less vesicular 

depletion, perhaps implying either an increased density of vesicles available for release, or 

a facilitated movement of vesicles to the active zone for release. The overall result would 

be an increased probability of vesicular release. It is also possible that the accumulation of 

intra-terminal calcium begins to occur earlier in synaptic terminals from treated animals so 

that the balance of mechanisms causing PPI and PPF is altered at this earliest time 

interval. 

     Another possibly relevant factor stems from the observation by Al-Hayani and Davies 

(2002) that the occurrence of secondary spikes predisposes slices to generate relatively 

weak PPI. However, care was taken in this study to examine only those slices which did 

not exhibit a secondary spike, making this factor an unlikely complication. 

     The occurrence of altered synaptic behaviour was strongly supported by extending this 

analysis to an examination of paired-pulse interactions at different frequencies of paired-

pulse delivery. Increasing the frequency of stimulation from 0.05 to 1Hz has been shown 

previously to induce a shift from PPF to PPI in the hippocampus (Saviane et al. 2002). A 

similar change from PPF to PPI was reported following exposure to 4-aminopyridine, a 

potassium channel blocker which facilitates transmitter release (Pena et al., 2002) while 

increased paired-pulse inhibition was reported on exposure to bicuculline (Higgins and 

Stone, 1993) or following seizure activity (Stringer and Lothman, 1989). It has also been 
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reported that a similar shift from PPF to PPI can be induced by raising the stimulation 

strength (Huang et al., 2007).  

     In the present study, increasing stimulation frequency had little effect on the PPI seen 

in control slices, whereas the early PPF seen in slices from experimental animals was 

converted to PPI which, at a frequency of 1Hz, significantly exceeded the magnitude of 

PPI in control slices. Together, these various paired-pulse results suggest a facilitated 

release of transmitter in treated animals at small interpulse intervals, with either an 

increased depletion of vesicles at higher pair frequencies or a reduction in the opposing 

accumulation of calcium, which normally maintains transmitter release approximately 

constant over the frequency range examined. 

     There are, however, other factors that need to be examined in further detail in future 

work, since it has been suggested that presynaptic inhibitory receptors (Forsythe and 

Clements, 1990) including those for adenosine (Higgins and Stone, 1996), receptor 

desensitisation (Otis et al., 1996; Neher and Sakaba, 2001) or some form of refractory 

state (Waldeck et al., 2000) may contribute to paired-pulse interactions. GABA receptors 

may also be involved (Nathan et al., 1990) although this is likely to affect multiple spiking 

rather than primary potentials (Leung and Fu, 1994) and care was always taken in this 

study to limit investigation to slices showing no secondary spikes following single stimuli. 

While there is relatively little evidence that these processes contribute significantly to 

paired-pulse phenomena under normal conditions, it is of course possible that they may 

assume greater importance in the animals exposed to Ro61-8048.  

   Finally, changes were sought in the amplitude of LTP and LTD, the former induced by 

theta-burst stimulation which reproduces natural patterns of hippocampal activity and 

produces an optimal level of LTP (Larson et al., 1986). Exposure to Ro61-8048 in utero led 

to a defect in theta-burst LTP which, while still occurring to a significant extent, was 

significantly smaller than in slices from control animals. The specificity of the phenomenon 
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was emphasised by the absence of any significant difference in the amplitude of LTD, 

although the significant differences described in the time course of recovery from the 

second period of stimulation might reflect a degree of functional synaptic change. Indeed, 

both the reduced LTP amplitude and the slowed recovery towards the plateau LTD could 

be accommodated broadly within a hypothesis that explained the increased ratio of 

inhibition to facilitation at the higher frequencies of paired-pulse delivery.  It is interesting to 

note a recent report that the expression of GluN2A, but not of GluN2B, was increased in 

the rat hippocampus 1 h after LTP induction (Baez et al., 2013). Hence, the decrease in 

LTP reported here may be, at least in part, a consequence of the reduced expression of 

GluN2A in the offspring from Ro61-8048-treated rats. 

 

Mechanisms underlying altered development 

   It is well established that neuronal receptors for glutamate and acetylcholine are heavily 

involved in brain development. Glutamate receptors, especially those sensitive to NMDA 

affect neuronal migration, synapse formation (Dikranian et al., 2001; Udin & Grant, 1999), 

neurite growth (Udin & Grant 1999), spine formation (Ultanir et al., 2007) and neuronal 

plasticity (Fagiolini et al., 2003; Drian et al., 2001; Iwasato et al., 2000;  du Bois & Huang 

2007). The expression of neural cell adhesion molecules is partly controlled by NMDAR 

activation. The pharmacological blockade of NMDARs in neonatal rats causes a loss and 

disruption of synapses with profound abnormalities of brain structure and behaviour in 

adulthood (Dikranian et al., 2001). NMDAR blockade also produces a substantial loss of 

neurons partly resulting from the regulation by NMDARs of the p53 tumour suppressor 

gene. A similar loss of NMDAR function during development could contribute to the 

programmed elimination of neurons which shapes the early nervous system.  

   The major route for the metabolism of tryptophan is the oxidative pathway via kynurenine 

(Stone & Darlington, 2002). In most other tissues, including blood monocytes, 
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macrophages and their descendant microglia, the first enzyme is indoleamine-2,3-

dioxygenase [IDO], which is potently induced by inflammatory mediators such as IFN-, IL-

1 and TNF- which mediate the effects of lipopolysaccharides and poly(I:C). Since the 

pathway includes quinolinic acid as an agonist at NMDARs (Stone & Perkins 1981) and 

kynurenic acid as an antagonist at all ionotropic glutamate receptors, though with greatest 

potency at NMDARs (Perkins & Stone 1982), it represents a major link between activation 

of the immune system and the modulation of glutamate (especially NMDA) receptors. In 

addition, the kynurenine pathway is present partly in neurons and partly in glia (Guidetti et 

al., 2007; Schwarcz & Pellicciari, 2002; Guillemin et al., 2001, 2005). Since glial cells 

present in the early stages of CNS development regulate the appearance and function of 

NMDARs, the location of the pathway is consistent with the possibility that the activation of 

NMDARs is determined partly by quinolinic acid balanced by the glutamate receptor 

antagonist kynurenic acid.  Indeed, it has been proposed that tissue formation and polarity 

may be determined largely by a gradient for a signal antagonist, rather than an agonist 

(Gurdon & Bourillot, 2001), which would fit well with the concept of a major developmental 

role for kynurenic acid. With its selectivity for NMDARs, kynurenic acid would also alter the 

balance of activation of the various subpopulations of glutamate receptors.  

     The kynurenine pathway is present during embryonic development (Beal et al., 1992; 

Saito et al., 1993; Walker et al., 1999), as reflected in the expression of one or more 

enzymes or the presence of key components such as kynurenine, kynurenic acid or 

quinolinic acid.  The ability of prenatal inhibition of the kynurenine pathway to produce 

significant changes in synaptic properties in the adult offspring, as shown in this report, 

strongly suggests that the pathway normally plays a significant role in cerebral 

development. There are several ways in which this could occur, the most likely being 

changes in cerebral concentration of kynurenic acid which may vary during pregnancy in 

response to external factors such as infection and stress. Indeed any immune challenge to 
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the mother or neonate which results, directly or indirectly, in the activation of central glia or 

peripheral macrophages, or changes in the levels of cytokines or kynurenines in the foetal 

or neonatal CNS would alter the balance of quinolinic acid and kynurenic acid 

concentrations and could significantly affect neural development and plasticity. This 

proposal is consistent with evidence that genetic abnormalities of the kynurenine pathway 

are linked to disorders such as schizophrenia (Miller et al., 2006; Holtze et al., 2012). 

 

Protein and mRNA expression 

     Analysis of mRNA levels using qRT-PCR failed to reveal any changes in gene 

expression. This strongly suggests that the various changes in synaptic function and 

protein expression have developed either from alterations in the translation of unchanged 

RNA into protein or from short-term changes in gene expression that may have been 

limited to the time during which Ro61-8048 was active in raising the levels of kynurenic 

acid. It should also be noted that temporal and quantitative differences are frequently 

encountered in comparisons of mRNA and protein expression, resulting in poor 

correlations between these parameters (English et al., 2011) 

     The investigation of protein expression was performed to identify changes that might 

result from kynurenine pathway inhibition. Many of the changes that had been recorded at 

P21 (Forrest et al., 2013) were no longer demonstrable in this study at P60, suggesting 

that those aspects of neuronal and synaptic development and function which were 

abnormal compared with control animals at P21 had largely returned to normal by P60. 

However, the existence of changes at P21 implies an effect of kynurenine pathway 

inhibition on both the extent of expression at this time and on the rate of appearance or 

disappearance of those proteins in the course of brain development. Clearly, either 

quantitative or temporal disturbances of protein expression are likely to lead to a degree of 

abnormal expression and synaptic function at P60. Since the P21 stage of postnatal 
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development in the rat brain is estimated to be equivalent to the early stage of brain 

development seen near the end of the second trimester of pregnancy in humans (Dobbing 

and Sands 1979) it is interesting to speculate that any factors affecting brain development 

at these times are likely to result in some degree of abnormal brain function. 

     Of the 9 target proteins whose expression was modified at P21, three of them are 

molecules that remain significantly changed at P60: the GluN2A subunit, doublecortin and 

sonic hedgehog. Of note is the finding that the difference in GluN2B expression seen at 

P21 was not apparent at P60 and that expression of GluN2A was significantly different but 

in the opposite direction to that at P21 – a decrease in expression compared with the 

earlier increase. Since the ratio between GluN2A and GluN2B subunits is known to 

change during the course of early brain development and to have a major influence on 

behavioural and electrophysiological outcomes by adulthood (Traynelis et al., 2010), the 

shifts we have reported in these two subunits may be among the more important factors in 

generating the functional synaptic changes described above. As noted earlier, the reduced 

LTP and GluN2A expression seen here are entirely compatible with the recently reported 

increase in expression of GluN2A induced by LTP (Baez et al., 2013). 

 

Doublecortin 

     The increased expression of doublecortin at P60 – a change similar in magnitude and 

direction to that recorded at P21 - may provide an explanation for the electrophysiological 

changes reported here. Although the name ‘doublecortin’ was derived from the role of the 

protein in disorders of human neuronal migration in the neocortex which resulted in mental 

retardation and hyperexcitability (Gleeson et al., 1999; Nacher et al. 2001), the protein has 

also been linked with cellular lamination in the hippocampus (Corbo et al., 2002). It is a 

microtubule-associated protein which is expressed primarily in newly formed neurons 

(Couillard-Despres et al., 2005) and its deletion results in reduced neurogenesis and poor 
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recovery after stroke injury (Jin et al., 2010). Doublecortin is certainly active in 

neurogenesis during the earliest phases of brain development, with a progressive decline 

in its levels in the mature brain although it continues to be associated with new cell 

generation in the adult brain. The hippocampus, especially the subgranular zone of the 

dentate gyrus, exhibits high levels of doublecortin in the adult, probably related to the high 

levels of neurogenesis here. The significant increase in doublecortin levels, therefore, 

would imply an increased rate of new neurogenesis in the hippocampus following 

exposure to Ro61-8048 in utero.  

   While there were no overall changes in LTD, the more prolonged recovery from low 

frequency stimulation may be related to the association that has been reported between 

doublecortin expression and GABA-ergic function. The neuronal hyperexcitability which 

results from mutations or deletions of doublecortin results from a reduction of synaptic 

inhibition (Kerjan et al., 2009) which in turn is consistent with the co-localization of 

doublecortin with GABA, its synthetic enzyme glutamate decarboxylase, or parvalbumin, a 

marker for GABA-releasing neurons (Cai et al., 2009). Indeed, neurons expressing 

doublecortin may be primarily destined to become GABAergic interneurons (Wu et al., 

2008; Xiong et al. 2008) and it has been proposed that doublecortin is required for the 

early migration of inhibitory interneurons in the cortex (Kappeler et al., 2006; Friocourt  et 

al. 2007).  

 

 Sonic hedgehog 

     The only other protein to remain significantly changed at P60 was sonic hedgehog 

(Shh). This protein is involved in the early development of tissue polarization and the 

generation of morphogenetic and orientational gradients (Palma et al., 2005; Traiffort et 

al., 2010). Despite its importance in the earliest stages of CNS formation, it continues to 

exist in the adult brain, notably in regions such as  the cerebellum (Vaillant & Monard 
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2009) and hippocampus (Traiffort et al., 1998; Charytoniuk et al., 2002; Dellovade et al., 

2006; Ahn & Joyner, 2005) where neurogenesis continues in the adult. Shh may also 

modulate cell proliferation and the migration of progenitor cells (Traiffort et al., 2001; 

Charytoniuk et al., 2002; Palma et al., 2005; Sims et al., 2009; Dave et al., 2011).  

     In addition, Shh is thought to modulate the mutual attraction or repulsion between 

neuritic branches and potential sites of synaptic contact (Hor & Tang, 2010; Angot et al., 

2008) and the reduction in Shh may interfere with appropriate contact formation during 

development. This may contribute to the functional differences observed in hippocampal 

transmission. In view of the evidence that Shh can promote the functional development of 

inhibitory neurons such as cerebellar granule cells (Spassky et al., 2008; Prajerova et al., 

2010) the combination of these factors could be partly responsible for the observed 

decreased in paired-pulse inhibition.  

      Since doublecortin has been linked with neurogenesis, it is perhaps surprising that the 

levels of Shh protein decrease, while those of doublecortin increase, given the role of the 

former in neuronal orientation and contact formation. However, the roles attributed to 

doublecortin temporally precede those ascribed to Shh, leading to the possibility that there 

is increased production of new neurons which then mature and differentiate more slowly 

than in control animals. 

     Although several of the proteins examined were altered at P21 after exposure to Ro61-

8048 in utero, the fact that no changes persisted into young adulthood at P60 suggests 

that the brain is able to adapt well to this particular interference. However, the protein and 

functional changes still persisting at P60 indicate that, despite any adaptations that have 

occurred between drug administration in utero and P21 or P60, the effects of kynurenine 

pathway inhibition in utero can clearly generate a sufficient disturbance of brain 

development that changes in three proteins with fundamental roles in the formation and 

maintenance of neuronal numbers, growth, connectivity and plasticity persist until early 
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adulthood. This conclusion raises the intriguing possibility that physiological or 

environmental influences on the kynurenine pathway in utero may contribute to brain 

function and behaviour in the postnatal years and adulthood. Since Shh plays a 

particularly prominent role in development of dopaminergic neuron projections (Wang  et 

al., 1995; Hynes et al., 1995; Tang et al., 2010; Wu et al., 2012; Parish et al., 2008), its 

loss may be particularly relevant to the emergence of parkinsonian symptoms in 

adulthood.  

 

Behaviour 

     The changes in neurodevelopmental proteins and synaptic physiology might be 

expected to lead to alterations in behaviour. The administration of kynurenine to adult or 

perinatal rats (Erhardt et al., 2004; Nilsson et al., 2006; Pocivavsek et al., 2012) or the 

depletion of kynurenic acid levels by deleting kynurenine aminotransferase (Potter et al., 

2010) have demonstrated effects on learning in complex tasks such as pre-pulse inhibition 

(Erhardt et al., 2004; Nilsson et al., 2006), a water maze (Chess et al., 2007), stimulus 

discrimination (Alexander et al., 2012; Pocivavsek et al., 2012) or attentional set shifting 

(Alexander et al., 2013; Pocivavsek et al., 2012). In the present study behavioural testing 

was limited to a classical step-down avoidance task which can simplify the interpretation of 

drug effects on registration, consolidation and recall, but no significant differences were 

noted in the offspring of animals treated with Ro61-8048 compared with saline controls.   

     Differences between the results from these various studies may be caused by 

differences in the neurochemical effects of Ro61-8048 and kynurenine administration, the 

timing of prenatal treatment (three injections of Ro61-8048 during pregnancy in this study 

compared with kynurenine administration to adults or continual intake in the diet pre- and 

post-natally), or the nature of the behavioural tests. The simple step-down avoidance 

procedure may not be appropriate to detect cognitive changes that are only revealed in 
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more complex tasks (Chess et al., 2007; Pocivavsek et al., 2012; Alexander et al., 2012, 

2013), or which require testing of aspects of behaviour more subtle than a simple learning 

task. It has also been noted previously that some, but not all aspects of cognitive function 

are influenced by elevated levels of kynurenic acid (Chess and Bucci, 2006; Chess et al., 

2009). In addition, it has been reported that simpler learning tasks such as step-down 

avoidance task can be achieved by neural pathways involving or excluding the 

hippocampus, so that even major hippocampal damage can be circumvented by 

alternative cerebral pathways (Martel et al., 2010). This would certainly account for the 

failure of the subtle hippocampal changes described here to alter step-down avoidance.  

 

Additional consequences of KMO inhibition 

     In addition to the major increase in kynurenic acid concentrations, the inhibition of KMO 

may also have effects on neuronal excitability and function by reducing the levels of other 

compounds normally generated as secondary products of kynurenine oxidation (Stone & 

Darlington 2002, 2013; Schwarcz et al., 2012; Stone et al., 2013). The immediate product 

of KMO, 3-hydroxykynurenine (3HK) is an effective neurotoxin (Okuda et al., 1998) and is 

converted by kynureninase to 3-hydroxy-anthranilic acid (3HAA) which, in addition to direct 

actions on T cell viability (Munn 2011), can auto-oxidise to the dimeric cinnabarinic acid 

(Dykens et al., 1987), a compound which is at least 10-fold more active as an inducer of T 

cell death (Hiramatsu et al., 2008). This compound also activates the metabotropic 

glutamate receptor mGluR4 (Fazio et al., 2012) which, as a member of the Group III 

metabotropic receptor family, has a range of actions in the CNS including modulation of 

anxiety, depression (Wieronska et al. 2010) and basal ganglia function (Niswender et al., 

2008; Broadstock et al.,  2012).  Another potentially important product is xanthurenic acid 

which has several characteristics of a neurotransmitter candidate (Gobaille et al. 2008), 

activates group II metabotropic glutamate receptors and can modify subcortical 
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neurotransmission (Copeland et al., 2013). It may also activate cationic channels that 

enhance neuronal excitability (Taleb et al., 2012) and may modulate excitability indirectly 

via inhibition of vesicular glutamate transporters (Neale 2013).   

 
Summary 
 
     Overall, the evidence from this study suggests that there is a basal, constitutive level of 

activity in the kynurenine pathway which is normally active in the embryonic, developing 

CNS. The pathway can influence the composition and function of NMDA receptors and the 

expression of proteins critical to normal brain development and function, some of which 

can persist into adulthood. These changes result in abnormal neurotransmission and 

plasticity which could cause disease or predispose individuals to the development of CNS 

disorders. The changes seen at P60 are remarkable in several respects. Firstly, many of 

the changes in protein expression seen at P21 are no longer present at P60, suggesting 

that the influence of modifying kynurenine function prenatally produced temporary, not 

permanent, alterations. The early changes, however, may well have caused or contributed 

to the changes noted here. 

     Secondly, the functional changes in synaptic interactions and plasticity are different at 

P60 from those seen at P21, indicating that the processes of network development and 

possible remodelling have been significantly modified by the earlier effects of Ro61-8048. 

     Thirdly, since the kynurenine pathway (mainly IDO and KMO) is activated by interferons 

and pro-inflammatory cytokines (Alberati-Giani et al., 1996), the ability of the pathway to 

regulate brain development carries the implication that it could be responsible for some of 

the recognised influence of infection during pregnancy on brain development of the 

embryo (Brown 2006, 2011; Meyer and Feldon 2010; Hornig et al., 1999). There are also 

some compounds in the diet, such as the brassinins found in cruciferous vegetables 

(cabbage, broccoli etc), which inhibit the kynurenine pathway (Banerjee et al., 2008), 

mimicking the effects of Ro61-8048. According to our results the changes in the levels of 
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kynurenic acid and other kynurenine metabolites which they could produce might affect 

brain development. There are also simple metabolites such as oxoglutarate and pyruvate 

(Shin et al., 1982) as well as vitamins such as pyridoxal (Breton et al. 2000) which can 

activate or inhibit KMO directly depending on concentration and which might have 

pathological relevance. 

     Finally, two of the proteins that are fundamental players in the early generation, 

maturation and organisation of cells remain significantly altered at P60 in the same 

direction as found at P21 – doublecortin levels are increased and sonic hedgehog levels 

are decreased at both time points. Together with the persisting increase in GluN2A 

expression it seems probable that these proteins might represent key links between the 

kynurenine pathway and brain development and future work should be directed at 

exploring the sites and mechanisms of this relationship. 
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Figure legends 

Figure 1 

Hippocampal function at P60 after prenatal exposure to Ro61-8048. 

The increase in size of (A) field excitatory postsynaptic potentials (EPSPs) and (B) 

population spikes (PS) as a function of stimulus current in the hippocampal CA1 region of 

adult (P60) rats exposed prenatally to Ro61-8048. The symbols indicate mean  s.e.mean 

(n = 12).  There were no significant differences between any of the pairs of data points. 

Paired-pulse data are shown for the ratio of fEPSPs recorded in the stratum radiatum (C). 

The sample recordings alongside the graph illustrate the digital subtraction performed for 

the recordings made at an interpulse interval of 10ms, with (a) being a normal single 

fEPSP, (b) two responses at the 10ms interval, and (c) the second response alone 

generated by the subtraction of (a) from (b). Record (d) shows the directly superimposed 

traces (a) and (c) while (d) illustrates the superimposed traces adjusted to the same 

stimulus point. Paired pulse data for the ratio of PS recorded in stratum pyramidale are 

shown in (D). The sample traces alongside illustrate (a) a single PS  while other traces 

illustrate pairs of PS at interpulse intervals of (b) 50ms (c) 20ms and (d) 10ms. 

The change in PS ratio at different rates of paired-pulse presentation from 0.05 to 1Hz is 

shown in (E). The sample traces show individual records of paired PS at presentation 

rates of (a) 0.05Hz and (b) 1Hz. 

Symbols in the graphs indicate mean  s.e.mean (n = 12).  

** P < 0.01; ***P < 0.001 using the Bonferroni test for multiple comparisons following 

ANOVA.. 
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Figure 2.  

Adult hippocampal plasticity after prenatal exposure to Ro61-8048.  

Panel (A) illustrates long-term potentiation in the two groups of offspring following theta-

burst stimulation at the arrow. The inset records illustrate a control fEPSP immediately 

before stimulation and the potentiated response 40min later in a slice from a control animal 

(B) or an animal exposed in utero to Ro61-8048 (C).  The symbols indicate mean  

s.e.mean (n = 6). Calibrations 0.5mV and 10ms. 

*** P < 0.001 for the final 5 minutes of recording (ANOVA). 

Panel (D) illustrates long-term depression in the two groups of offspring induced by two 

periods of low frequency stimulation indicated by the bars on the abscissa at stim1 and 

stim2 (see text). The inset records illustrate a control fEPSP immediately before stim1 and 

the depressed responses 20min after stim1 and 20 min after stim2 in a slice from a control 

animal (E) or an animal exposed in utero to Ro61-8048 (F). 

The symbols indicate mean  s.e.mean (n = 6). Calibrations 1mV, 10ms for the control 

records and 0.5mV, 10ms for drug-exposed slices.  There were no significant differences 

between levels of LTD in the control and treated slices over the last 5min of recording. 

 

 

 

Figure 3. 

Sensitivity to adenosine of adult hippocampal slices after prenatal exposure to 

Ro61-8048. 

(A) Graph summarising changes in fEPSP amplitude in response to the application of 

adenosine at concentrations of 10µM and 30µM. Adenosine was superfused for 10min 

indicated by the solid bar. Symbols represent responses recorded in control slices 

superfused with 10µM (filled squares,■), or 30µM (filled circles,●), and slices from animals 

exposed prenatally to Ro61-8048 superfused with 10µM (open diamonds, ◊) or 30µM 
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(open triangles, ∆) adenosine.  (B) and (C) show individual sample records of fEPSPs from 

control (B) or Ro61-8048 exposed animals (C), recorded before and after recovery from 

the application of adenosine at 30µM, and at the peak of the response to adenosine, 

illustrating complete recovery after the adenosine application.  (D) summarises the pooled 

data on the degree of fEPSP depression produced by adenosine at 10µM and 30µM, 

illustrating the absence of any difference between slices from control and Ro61-8048 

treated animals. 

Calibrations 1mV, 10ms. 

 

 

 

Figure 4 

Analysis of mRNA by qRT-PCR. 

Effect of prenatal administration of Ro61-8048 on mRNA expression in the hippocampus 

of offspring at P60.  qRT-PCR analysis of the expression of transcripts (Grin2a, Grin2b, 

Dcx, Shh) in relation to 3 reference  genes  Actb, Gapdh and Rn18s. Grin2a (A, E, J), 

Grin2b (B, F, K), Dcx (C, G, L) and Shh (D, H, M). Results are shown as mean ± s.e.m. of  

2 -Δ Ct (n = 9 animals per group).  
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Figure 5 

Expression of proteins in the hippocampus of control and Ro61-8048-treated 

animals. 

The panels summarise the expression of several of the proteins examined in this study 

using Western blots. Data are shown for the optical density of blots relative to actin for (A) 

GluN2A, (B) GluN2B and (C) GluN1 subunits, (D) PSD-95, (E) RhoA, (F) EphA4, (G) 

doublecortin (DCX) and (H) sonic  hedgehog (Shh). 

* p < 0.05; ** p < 0.01 (t test, n = 6 for Ro61-8048, n = 4 for controls). 

 

 

Figure 6 

Open-field exploration task. 

Animals were exposed twice to an open field arena on two consecutive days. The bar 

diagrams summarize (A) the number of times the animals cross into new sectors of the 

open field arena (OF) and (B) the number of rearings for control and treated rats, during 

the 5 min periods they were exposed to the arena. Results are shown from the first 

session (OF1) and from the second session (OF2) performed 27-28h later.   

The bars represent median with interquartile ranges.  

* significant difference between control and treated animal (p < 0.05, Wilcoxon signed rank 

test after Kruskal–Wallis ANOVA for non-parametric samples). 

All animals: control n = 38; treated n = 53. 

There were no significant differences between control and treated groups in crossings and 

rearings during the first (OF1, P>0.05) or second open field exposure (OF2; p>0.05, Mann-

Whitney test). 
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Figure 7 

Step-down inhibitory avoidance in control and treated animals. 

The bar diagrams show the latencies to step-down from an isolated platform to the 

electrified grid, in an inhibitory avoidance paradigm. Control and treated rats were trained 

(TR) and tested (TEST) after 20 h. The bars represent median with interquartile ranges. 

TR: training session; TEST: test session; DIFF: differences between test and training 

sessions).  

* significant difference between TR and TEST latencies (p<0.05, Wilcoxon signed rank test 

after Kruskal–Wallis ANOVA for non-parametric samples). (A) All animals were 60 day old 

adults treated prenatally with Ro61-8048: control n=34; treated n=50. Analysis was also 

performed for males and females separately to exclude any gender effects:  (B) male rats: 

control n=20; treated n=19; (C) female rats: control, n=14; treated, n=31. 

There were no significant differences between groups in latency differences (p > 0.05, 

Mann-Whitney test). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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