95 research outputs found

    The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations.

    Get PDF
    Pulmonary arterial hypertension (PAH) is characterized by dysregulated pulmonary artery endothelial cell (PAEC) proliferation, apoptosis and permeability. Loss-of-function mutations in the bone morphogenetic protein receptor type-II (BMPR-II) are the most common cause of heritable PAH, usually resulting in haploinsufficiency. We previously showed that BMPR-II expression is regulated via a lysosomal degradative pathway. Here, we show that the antimalarial drug, chloroquine, markedly increased cell surface expression of BMPR-II protein independent of transcription in PAECs. Inhibition of protein synthesis experiments revealed a rapid turnover of cell surface BMPR-II, which was inhibited by chloroquine treatment. Chloroquine enhanced PAEC expression of BMPR-II following siRNA knockdown of the BMPR-II transcript. Using blood outgrowth endothelial cells (BOECs), we confirmed that signalling in response to the endothelial BMPR-II ligand, BMP9, is compromised in BOECs from patients harbouring BMPR-II mutations, and in BMPR-II mutant PAECs. Chloroquine significantly increased gene expression of BMP9-BMPR-II signalling targets Id1, miR21 and miR27a in both mutant BMPR-II PAECs and BOECs. These findings provide support for the restoration of cell surface BMPR-II with agents such as chloroquine as a potential therapeutic approach for heritable PAH

    Log-transformation improves the prognostic value of serial NT-proBNP levels in apparently stable pulmonary arterial hypertension.

    Get PDF
    N-terminal pro B-type natriuretic peptide (NT-proBNP) is a product of cleavage of the cardiac prohormone pro B-type natriuretic peptide into its active form. It has proven to be a useful biomarker in left heart failure. However, studies examining the utility of serial measurements of NT-proBNP in pulmonary arterial hypertension (PAH) patients have shown mixed results. We compared three methods of predicting adverse clinical outcomes in PAH patients: the change in 6 minute walk distance (6MWD), the change in absolute levels of NT-proBNP and the change in log-transformed levels of NT-proBNP. All PAH patients presenting from March-June 2007 were screened. Patients who were clinically unstable, had abnormal renal function or hemoglobin levels or lacked a prior NT-proBNP were excluded. 63 patients were followed up for adverse clinical outcomes (defined as death, transplantation, hospitalisation for right heart failure, or need for increased therapy). Three methods were used to predict adverse events, i.e.: (a) comparing a 6MWD performed in March-June 2007 and a previous 6MWD. A decrease in 6MWD of ≥30m was used to predict clinical deterioration; (b) comparing a NT-proBNP value measured in March-June 2007 and a previous NT-proBNP. An increase in NT-proBNP of ≥250pg/ml was used to predict clinical deterioration (250pg/ml represented approximately 30% change from the baseline median value of NT-proBNP for this cohort); and (c) comparing the loge equivalents of two consecutive NT-proBNP values. We used the formula: loge(current NT-proBNP) - loge(previous NT-proBNP)=x. A value of x≥+0.26 was used to predict adverse events. This is equivalent to a 30% change from baseline, and hence is comparable to the chosen cut-off for absolute levels of NT-proBNP. A loge difference of ≥+0.26 identifies patients at risk of adverse events with a specificity of 98%, a sensitivity of 60%, a positive predictive value of 89%, and a negative predictive value of 90%. A drop in 6MWD of ≥30m has a specificity of 29%, a sensitivity of 73%, a positive predictive value of 24% and a negative predictive value of 24%. It seems possible to risk-stratify apparently stable PAH patients by following the changes in their serial log-transformed NT-proBNP values. In this small pilot study, this method was better than relying on changes in the actual levels of NT-proBNP or changes in 6MWD. This needs to be validated prospectively in a larger cohort

    Respiratory sequelae of COVID-19: pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation

    Get PDF
    Although the exact prevalence of post-COVID-19 condition (also known as long COVID) is unknown, more than a third of patients with COVID-19 develop symptoms that persist for more than 3 months after SARS-CoV-2 infection. These sequelae are highly heterogeneous in nature and adversely affect multiple biological systems, although breathlessness is a frequently cited symptom. Specific pulmonary sequelae, including pulmonary fibrosis and thromboembolic disease, need careful assessment and might require particular investigations and treatments. COVID-19 outcomes in people with pre-existing respiratory conditions vary according to the nature and severity of the respiratory disease and how well it is controlled. Extrapulmonary complications such as reduced exercise tolerance and frailty might contribute to breathlessness in post-COVID-19 condition. Non-pharmacological therapeutic options, including adapted pulmonary rehabilitation programmes and physiotherapy techniques for breathing management, might help to attenuate breathlessness in people with post-COVID-19 condition. Further research is needed to understand the origins and course of respiratory symptoms and to develop effective therapeutic and rehabilitative strategies

    Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-β pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention

    Effective control of SARS-CoV-2 transmission between healthcare workers during a period of diminished community prevalence of COVID-19

    Get PDF
    Funder: Addenbrooke's Charitable Trust, Cambridge University Hospitals; FundRef: http://dx.doi.org/10.13039/501100002927Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK ‘lockdown’. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent ‘hubs’ of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation
    corecore