888 research outputs found

    The SOL Genomics Network Model: Making Community Annotation Work

    Get PDF
    The concept of community annotation is a growing discipline for achieving participation of the research community in depositing up‐to‐date knowledge in biological databases.
The Solanaceae Genomics Network ("SGN":http://sgn.cornell.edu/) is a clade‐oriented database (COD) focusing on plants of the nightshade family, including tomato, potato, pepper, eggplant, and tobacco, and is one of the bioinformatics nodes of the international tomato genome sequencing project. One of our major efforts is linking Solanaceae phenotype information with the underlying genes, and subsequently the genome. As part of this goal, SGN has introduced a database for locus names and descriptors, and a database for phenotypes of natural and induced variation. These two databases have web interfaces that allow cross references, associations with tomato gene models, and in‐house curated information of sequences, literature, ontologies, gene networks, and the Solanaceae biochemical pathways database ("SolCyc":http://solcyc.sgn.cornell.edu). All of our curator tools are open for online community annotation, through specially assigned “submitter” accounts. 

Currently the community database consists of 5,548 phenotyped accessions, and 5,739 curated loci, out of which more than 300 loci where contributed or annotated by 66 active submitters, creating a database that is truly community driven.
This framework is easily adaptable for other projects working on other taxa (for example see "http://chlamybase.org":http://chlamybase.org), greatly expanding the application of this user‐friendly online annotation system. Community participation is fostered by an active outreach program that includes contacting potential submitters via emails, at meetings and conferences, and by promoting featured user submitted annotations on the SGN homepage. The source code and database schema for all SGN functionalities are freely available. Please contact SGN at "sgn‐feedback[at]sgn.cornell.edu":mailto:[email protected] for more information

    It's not easy being green: The evolution of galaxy colour in the EAGLE simulation

    Get PDF
    We examine the evolution of intrinsic u-r colours of galaxies in the EAGLE cosmological hydrodynamical simulations, which has been shown to reproduce the observed redshift z=0.1 colour-magnitude distribution well. The median u-r of star-forming ('blue cloud') galaxies reddens by 1 mag from z=2 to 0 at fixed stellar mass, as their specific star formation rates decrease with time. A red sequence starts to build-up around z=1, due to the quenching of low-mass satellite galaxies at the faint end, and due to the quenching of more massive central galaxies by their active galactic nuclei (AGN) at the bright end. This leaves a dearth of intermediate-mass red sequence galaxies at z=1, which is mostly filled in by z=0. We quantify the time-scales of colour transition due to satellite and AGN quenching, finding that most galaxies spend less than 2 Gyr in the 'green valley'. On examining the trajectories of galaxies in a colour-stellar mass diagram, we identify three characteristic tracks that galaxies follow (quiescently star-forming, quenching and rejuvenating galaxies) and quantify the fraction of galaxies that follow each track

    Miscentring in Galaxy Clusters: Dark Matter to Brightest Cluster Galaxy Offsets in 10,000 SDSS Clusters

    Full text link
    We characterise the typical offset between the Dark Matter (DM) projected centre and the Brightest Cluster Galaxy (BCG) in 10,000 SDSS clusters. To place constraints on the centre of DM, we use an automated strong-lensing analysis, mass-modelling technique which is based on the well-tested assumption that light traces mass. The cluster galaxies are modelled with a steep power-law, and the DM component is obtained by smoothing the galaxy distribution fitting a low-order 2D polynomial (via spline interpolation), while probing a whole range of polynomial degrees and galaxy power laws. We find that the offsets between the BCG and the peak of the smoothed light map representing the DM, \Delta, are distributed equally around zero with no preferred direction, and are well described by a log-normal distribution with <log_{10}(\Delta [h^{-1} Mpc])>=-1.895^{+0.003}_{-0.004}, and \sigma=0.501\pm0.004 (95% confidence levels), or =0.564\pm0.005, and \sigma=0.475\pm0.007. Some of the offsets originate in prior misidentifications of the BCG or other bright cluster members by the cluster finding algorithm, whose level we make an additional effort to assess, finding that ~10% of the clusters in the probed catalogue are likely to be misidentified, contributing to higher-end offsets in general agreement with previous studies. Our results constitute the first statistically-significant high-resolution distributions of DM-to-BCG offsets obtained in an observational analysis, and importantly show that there exists such a typical non-zero offset in the probed catalogue. The offsets show a weak positive correlation with redshift, so that higher separations are generally found for higher-z clusters in agreement with the hierarchical growth of structure, which in turn could help characterise the merger, relaxation and evolution history of clusters, in future studies. [ABRIDGED]Comment: 15 pages, 11 figures; MNRAS in press; V3 includes minor text update

    Ensemble Properties of Comets in the Sloan Digital Sky Survey

    Full text link
    We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u,g,r,i,z) photometry is used to determine the comets' colors, sizes, surface brightness profiles, and rates of dust production in terms of the Af{\rho} formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(< H) \propto 10(0.49\pm0.05)H for H < 18, with evidence of a much shallower fit N(< H) \propto 10(0.19\pm0.03)H for the faint (14.5 < H < 18) comets. The resolved comets show an extremely narrow distribution of colors (0.57 \pm 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.Comment: 19 pages, 8 tables, 11 figures, to appear in Icaru

    The Extreme Hosts of Extreme Supernovae

    Full text link
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of seventeen luminous supernovae (LSNe, having peak M_V < -21) and compare them to a sample of 26,000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSNe hosts on the galaxy NUV-r versus M_r color magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M_*) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M_* in the area having higher sSFR and lower M_*. This preference for low M_*, high sSFR hosts implies the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M_sun), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.Comment: 8 pages, 3 figures, 2 tables, accepted to ApJ, amended references and updated SN designation

    Direct Evidence for Termination of Obscured Star Formation by Radiatively Driven Outflows in Reddened QSOs

    Get PDF
    We present optical to far-infrared photometry of 31 reddened QSOs that show evidence for radiatively driven outflows originating from AGN in their rest-frame UV spectra. We use these data to study the relationships between the AGN-driven outflows, and the AGN and starburst infrared luminosities. We find that FeLoBAL QSOs are invariably IR-luminous, with IR luminosities exceeding 10^{12} Solar luminosities in all cases. The AGN supplies 76% of the total IR emission, on average, but with a range from 20% to 100%. We find no evidence that the absolute luminosity of obscured star formation is affected by the AGN-driven outflows. Conversely, we find an anticorrelation between the strength of AGN-driven outflows, as measured from the range of outflow velocities over which absorption exceeds a minimal threshold, and the contribution from star formation to the total IR luminosity, with a much higher chance of seeing a starburst contribution in excess of 25% in systems with weak outflows than in systems with strong outflows. Moreover, we find no convincing evidence that this effect is driven by the IR luminosity of the AGN. We conclude that radiatively driven outflows from AGN can have a dramatic, negative impact on luminous star formation in their host galaxies. We find that such outflows act to curtail star formation such that star formation contributes less than ~25% of the total IR luminosity. We also propose that the degree to which termination of star formation takes place is not deducible from the IR luminosity of the AGN.Comment: Accepted for publication in Ap

    The UV-Optical Color Dependence of Galaxy Clustering in the Local Universe

    Get PDF
    We measure the UV-optical color dependence of galaxy clustering in the local universe. Using the clean separation of the red and blue sequences made possible by the NUV - r color-magnitude diagram, we segregate the galaxies into red, blue and intermediate "green" classes. We explore the clustering as a function of this segregation by removing the dependence on luminosity and by excluding edge-on galaxies as a means of a non-model dependent veto of highly extincted galaxies. We find that \xi (r_p, \pi) for both red and green galaxies shows strong redshift space distortion on small scales -- the "finger-of-God" effect, with green galaxies having a lower amplitude than is seen for the red sequence, and the blue sequence showing almost no distortion. On large scales, \xi (r_p, \pi) for all three samples show the effect of large-scale streaming from coherent infall. On scales 1 Mpc/h < r_p < 10 Mpc/h, the projected auto-correlation function w_p(r_p) for red and green galaxies fits a power-law with slope \gamma ~ 1.93 and amplitude r_0 ~ 7.5 and 5.3, compared with \gamma ~ 1.75 and r_0 ~ 3.9 Mpc/h for blue sequence galaxies. Compared to the clustering of a fiducial L* galaxy, the red, green, and blue have a relative bias of 1.5, 1.1, and 0.9 respectively. The w_p(r_p) for blue galaxies display an increase in convexity at ~ 1 Mpc/h, with an excess of large scale clustering. Our results suggest that the majority of blue galaxies are likely central galaxies in less massive halos, while red and green galaxies have larger satellite fractions, and preferentially reside in virialized structures. If blue sequence galaxies migrate to the red sequence via processes like mergers or quenching that take them through the green valley, such a transformation may be accompanied by a change in environment in addition to any change in luminosity and color.Comment: accepted by MNRA

    The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    Get PDF
    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of 1.2×1012M\sim 1.2 \times 10^{12} M_{\odot} and the corresponding mass to light ratio in the B-band is 26M/L\sim 26 M_{\odot}/L_{\odot} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.Comment: Accepted for publication in A

    Social science perspectives on drivers of and responses to global

    Full text link
    This article provides a review of recent anthropological, archeological, geographical, and sociological research on anthropogenic drivers of climate change, with a particular focus on drivers of carbon emissions, mitigation and adaptation. The four disciplines emphasize cultural, economic, geographic, historical, political, and social‐structural factors to be important drivers of and responses to climate change. Each of these disciplines has unique perspectives and makes noteworthy contributions to our shared understanding of anthropogenic drivers, but they also complement one another and contribute to integrated, multidisciplinary frameworks. The article begins with discussions of research on temporal dimensions of human drivers of carbon emissions, highlighting interactions between long‐term and near‐term drivers. Next, descriptions of the disciplines\u27 contributions to the understanding of mitigation and adaptation are provided. It concludes with a summary of key lessons offered by the four disciplines as well as suggestions for future research
    corecore