141 research outputs found

    Left-ventricular epi- and endocardium extraction from 3D ultrasound images using an automatically constructed 3D ASM

    Get PDF
    © 2014 Taylor & Francis.In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach

    Temporal diffeomorphic Free Form Deformation (TDFFD) applied to motion and deformation quantification of tagged MRI sequences

    Get PDF
    International audienceThis paper presents strain quantification results obtained from the Tagged Magnetic Resonance Imaging (TMRI) sequences acquired for the 1 st cardiac Motion Analysis Challenge (cMAC). We applied the Temporal Diffeomorphic Free Form Deformation (TDFFD) algorithm to the phantom and the 15 healthy volunteers of the cMAC database. The TDFFD was modified in two ways. First, we modified the similarity metric to incorporate frame to frame intensity differences. Second, on volunteer sequences, we performed the tracking backward in time since the first frames did not show the contrast between blood and myocardium, making these frames poor choices of reference. On the phantom, we propagated a grid adjusted to tag lines to all frames for visually assessing the influence of the different algorithmic parameters. The weight between the two metric terms appeared to be a critical parameter for making a compromise between good tag tracking while preventing drifts and avoiding tag jumps. For each volunteer, a volumet-ric mesh was defined in the Steady-State Free Precession (SSFP) image, at the closest cardiac time from the last frame of the tagging sequence. Uniform strain patterns were observed over all myocardial segments, as physiologically expected

    Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.JCM: Higher Education Funding Council for England and the UK National Institute for Health Research, University College London, Biomedical Research Centre; GC: NIHR BRC University College London. DAB: Intramural research program, National Institutes of Health

    SPM to the heart: mapping of 4D continuous velocities for motion abnormality quantification

    Get PDF
    International audienceThis paper proposes to apply parallel transport and statistical atlas techniques to quantify 4D myocardial motion abnormalities. We take advantage of our previous work on cardiac motion , which provided a continuous spatiotemporal representation of velocities, to interpolate and reorient cardiac motion fields to an unbiased reference space. Abnormal motion is quantified using SPM analysis on the velocity fields, which includes a correction based on random field theory to compensate for the spatial smoothness of the velocity fields. This paper first introduces the imaging pipeline for constructing a continuous 4D velocity atlas. This atlas is then applied to quantify abnormal motion patterns in heart failure patients

    Incompressible image registration using divergence-conforming B-splines

    Get PDF
    Anatomically plausible image registration often requires volumetric preservation. Previous approaches to incompressible image registration have exploited relaxed constraints, ad hoc optimisation methods or practically intractable computational schemes. Divergence-free velocity fields have been used to achieve incompressibility in the continuous domain, although, after discretisation, no guarantees have been provided. In this paper, we introduce stationary velocity fields (SVFs) parameterised by divergence-conforming B-splines in the context of image registration. We demonstrate that sparse linear constraints on the parameters of such divergence-conforming B-Splines SVFs lead to being exactly divergence-free at any point of the continuous spatial domain. In contrast to previous approaches, our framework can easily take advantage of modern solvers for constrained optimisation, symmetric registration approaches, arbitrary image similarity and additional regularisation terms. We study the numerical incompressibility error for the transformation in the case of an Euler integration, which gives theoretical insights on the improved accuracy error over previous methods. We evaluate the proposed framework using synthetically deformed multimodal brain images, and the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate that our method compares favourably with state-of-the-art methods whilst achieving volume preservation.Comment: Accepted at MICCAI 201

    Fully-Coupled Electromechanical Simulations of the LV Dog Anatomy Using HPC: Model Testing and Verification

    Get PDF
    Verification of electro-mechanic models of the heart require a good amount of reliable, high resolution, thorough in-vivo measurements. The detail of the mathematical models used to create simulations of the heart beat vary greatly. Generally, the objective of the simulation determines the modeling approach. However, it is important to exactly quantify the amount of error between the various approaches that can be used to simulate a heart beat by comparing them to ground truth data. The more detailed the model is, the more computing power it requires, we therefore employ a high-performance computing solver throughout this study. We aim to compare models to data measured experimentally to identify the effect of using a mathematical model of fibre orientation versus the measured fibre orientations using DT-MRI. We also use simultaneous endocardial stimuli vs an instantaneous myocardial stimulation to trigger the mechanic contraction. Our results show that synchronisation of the electrical and mechanical events in the heart beat are necessary to create a physiological timing of hemodynamic events. Synchronous activation of all of the myocardium provides an unrealistic timing of hemodynamic events in the cardiac cycle. Results also show the need of establishing a protocol to quantify the zero-pressure configuration of the left ventricular geometry to initiate the simulation protocol; however, the predicted zero-pressure configuration of the same geometry was different, depending on the origin of the fibre field employed.This work has been done with the support of the grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Government to the Barcelona Supercomputing Center. Part of the research leading to these results has received funding from the Seventh Framework Programme (FP7/2007-2013) under grant agreement n 611823. It has also been partially funded from the by the Spanish Ministry of Economy and Competitiveness (TIN2011-28067).Peer ReviewedPostprint (author's final draft

    Harmonized-Multinational qEEG Norms (HarMNqEEG)

    Get PDF
    This paper extends the frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. ii) We also show that the multinational harmonized Riemannian norms produce z-scores with increased diagnostic accuracy to predict brain dysfunction at school-age produced by malnutrition only in the first year of life. iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV

    Get PDF
    Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with pT0.5p_{\rm T}\geq0.5 GeV/c in η0.8|\eta|\leq0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (NchN_{\rm ch}) is reported for events with different pTp_{\rm T} scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low NchN_{\rm ch}, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean pTp_{\rm T} with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16, published version, figures from http://aliceinfo.cern.ch/ArtSubmission/node/308
    corecore