13 research outputs found

    Cauchy, infinitesimals and ghosts of departed quantifiers

    Get PDF
    Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson's frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz's distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robinson's framework, while Leibniz's law of homogeneity with the implied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide parallel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz's infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Euler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infinite exponent. Such procedures have immediate hyperfinite analogues in Robinson's framework, while in a Weierstrassian framework they can only be reinterpreted by means of paraphrases departing significantly from Euler's own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson's framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of departed quantifiers in his work. Cauchy's procedures in the context of his 1853 sum theorem (for series of continuous functions) are more readily understood from the viewpoint of Robinson's framework, where one can exploit tools such as the pointwise definition of the concept of uniform convergence. Keywords: historiography; infinitesimal; Latin model; butterfly modelComment: 45 pages, published in Mat. Stu

    Cauchy's infinitesimals, his sum theorem, and foundational paradigms

    Full text link
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy's proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy's proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy's proof closely and show that it finds closer proxies in a different modern framework. Keywords: Cauchy's infinitesimal; sum theorem; quantifier alternation; uniform convergence; foundational paradigms.Comment: 42 pages; to appear in Foundations of Scienc

    Is mathematical history written by the victors ?

    Get PDF
    peer reviewedWe examine prevailing philosophical and historical views about the origin of infinitesimal mathematics in light of modern infinitesimal theories, and show the works of Fermat, Leibniz, Euler, Cauchy and other giants of infinitesimal mathematics in a new light. Some topics from the history of infinitesimals illustrating our approach appear in alphabetical order

    Interpreting the Infinitesimal Mathematics of Leibniz and Euler

    No full text
    We apply Benacerraf's distinction between mathematical ontology and mathematical practice (or the structures mathematicians use in practice) to examine contrasting interpretations of infinitesimal mathematics of the 17th and 18th century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass's ghost behind some of the received historiography on Euler's infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a "primary point of reference for understanding the eighteenth-century theories." Meanwhile, scholars like Bos and Laugwitz seek to explore Eulerian methodology, practice, and procedures in a way more faithful to Euler's own. Euler's use of infinite integers and the associated infinite products is analyzed in the context of his infinite product decomposition for the sine function. Euler's principle of cancellation is compared to the Leibnizian transcendental law of homogeneity. The Leibnizian law of continuity similarly finds echoes in Euler. We argue that Ferraro's assumption that Euler worked with a classical notion of quantity is symptomatic of a post-Weierstrassian placement of Euler in the Archimedean track for the development of analysis, as well as a blurring of the distinction between the dual tracks noted by Bos. Interpreting Euler in an Archimedean conceptual framework obscures important aspects of Euler's work. Such a framework is profitably replaced by a syntactically more versatile modern infinitesimal framework that provides better proxies for his inferential moves. Keywords: Archimedean axiom; infinite product; infinitesimal; law of continuity; law of homogeneity; principle of cancellation; procedure; standard part principle; ontology; mathematical practice; Euler; LeibnizComment: 62 pages, to appear in Journal for General Philosophy of Scienc
    corecore