209 research outputs found

    Signature of the Overhauser field on the coherent spin dynamics of donor-bound electron in a single CdTe quantum well

    Full text link
    We have studied the coherent spin dynamics in an oblique magnetic field of electrons localized on donors and placed in the middle of a single CdTe quantum well, by using a time-resolved optical technique: the photo-induced Faraday rotation. We showed that this dynamics is affected by a weak Overhauser field created via the hyperfine interaction of optically spin-polarized donor-bound electrons with the surrounding nuclear isotopes carrying non-zero spins. We have measured this nuclear field, which is on the order of a few mT and can reach a maximum experimental value of 9.4 mT. This value represents 13 % of the maximal nuclear polarization, and corresponds also to 13 % of maximal electronic polarization.Comment: 15 pages, 4 figure

    Hole spin dephasing time associated to hyperfine interaction in quantum dots

    Full text link
    The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for conduction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only one order of magnitude smaller than the coupling constants of the electron-nuclear interaction. We also study, theoretically, the hole spin dephasing of an ensemble of quantum dots via the hyperfine interaction in the framework of frozen fluctuations of the nuclear field, in absence or in presence of an applied magnetic field. We also discuss experiments which could evidence the dipole-dipole hyperfine interaction and give information on hole mixing.Comment: 35 pages, 7 figures and 2 table

    Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)

    Full text link
    The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of (Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect (MOKE). A transient MOKE signal followed by low amplitude oscillations was evidenced, with a strong dependence on applied magnetic field, temperature and ps-ASP amplitude. Careful interferometric measurement of the layer's thickness variation induced by the ps-ASP allowed us to model very accurately the resulting signal, and interpret it as the strain modulated reflectivity (differing for σ±\sigma_{\pm} probe polarizations), independently from dynamic magnetization effects.Comment: 6 pages, 5 figure

    The influence of phosphorus content on magnetic anisotropy in ferromagnetic (Ga, Mn) (As, P)/GaAs thin films

    Get PDF
    International audienceThe magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn) (As, P) is studied in a material-specific microscopic k . p approach. We calculate the electronic energy band structure of (Ga, Mn) (As, P) quaternary ferromagnetic alloys using a 40-band k . p model and taking into account the s, p-d exchange interaction and the strain of the (Ga, Mn) (As, P) layer on a GaAs substrate. We determine the variations of the carrier effective masses in the strained (Ga, Mn) (As, P)/GaAs system. The magnetic anisotropy constants obtained from our simulations using a mean-field model are compared with the experimental ones determined by ferromagnetic resonance spectroscopy on a set of samples with constant manganese concentration and varying phosphorus concentration. An excellent quantitative agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters

    Enhancement of the electron spin memory by localization on donors in a quantum well

    Full text link
    We present easily reproducible experimental conditions giving long electron spin relaxation and dephasing times at low temperature in a quantum well. The proposed system consists in an electron localized by a donor potential, and immerged in a quantum well in order to improve its localization with respect to donor in bulk. We have measured, by using photoinduced Faraday rotation technique, the spin relaxation and dephasing times of electrons localized on donors placed in the middle of a 80A CdTe quantum well, and we have obtained 15ns and 18ns, respectively, which are almost two orders of magnitude longer than the free electron spin relaxation and dephasing times obtained previously in a similar CdTe quantum well (J. Tribollet et al. PRB 68, 235316 (2003)).Comment: 15 pages, 4 figure

    Structural and magnetic properties of molecular beam epitaxy (MnSb2Te4)x(Sb2Te3)1-x topological materials with exceedingly high Curie temperature

    Full text link
    Tuning magnetic properties of magnetic topological materials is of interest to realize elusive physical phenomena such as quantum anomalous hall effect (QAHE) at higher temperatures and design topological spintronic devices. However, current topological materials exhibit Curie temperature (TC) values far below room temperature. In recent years, significant progress has been made to control and optimize TC, particularly through defect engineering of these structures. Most recently we showed evidence of TC values up to 80K for (MnSb2Te4)x(Sb2Te3)1-x, where x is greater than or equal to 0.7 and less than or equal to 0.85, by controlling the compositions and Mn content in these structures. Here we show further enhancement of the TC, as high as 100K, by maintaining high Mn content and reducing the growth rate from 0.9 nm/min to 0.5 nm/min. Derivative curves reveal the presence of two TC components contributing to the overall value and propose TC1 and TC2 have distinct origins: excess Mn in SLs and Mn in Sb2-yMnyTe3QLs alloys, respectively. In pursuit of elucidating the mechanisms promoting higher Curie temperature values in this system, we show evidence of structural disorder where Mn is occupying not only Sb sites but also Te sites, providing evidence of significant excess Mn and a new crystal structure:(Mn1+ySb2-yTe4)x(Sb2-yMnyTe3)1-x. Our work shows progress in understanding how to control magnetic defects to enhance desired magnetic properties and the mechanism promoting these high TC in magnetic topological materials such as (Mn1+ySb2-yTe4)x(Sb2-yMnyTe3)1-x

    Emission State Structure and Linewidth Broadening Mechanisms in Type-II CdSe/CdTe Core–Crown Nanoplatelets: A Combined Theoretical–Single Nanocrystal Optical Study

    Get PDF
    Type-II heterostructures are key elementary components in optoelectronic, photovoltaic, and quantum devices. The staggered band alignment of materials leads to the stabilization of indirect excitons (IXs), i.e., correlated electron–hole pairs experiencing spatial separation with novel properties, boosting optical gain and promoting strategies for the design of information storage, charge separation, or qubit manipulation devices. Planar colloidal CdSe/CdTe core–crown type-II nested structures, grown as nanoplatelets (NPLs), are the focus of the present work. By combining low temperature single NPL measurements and electronic structure calculations, we gain insights into the mechanisms impacting the emission properties. We are able to probe the sensitivity of the elementary excitations (IXs, trions) with respect to the appropriate structural parameter (core size). Neutral IXs, with binding energies reaching 50 meV, are shown to dominate the highly structured single NPL emission. The large broadening linewidth that persists at the single NPL level clearly results from strong exciton–LO phonon coupling (Eph = 21 meV) whose strength is poorly influenced by trapped charges. The spectral jumps (≈10 meV) in the photoluminescence recorded as a function of time are explained by the fluctuations in the IX electrostatic environment considering fractional variations (≈0.2 e) of the noncompensated charge defects
    • 

    corecore