124 research outputs found

    Neutron diffraction reveals sequence-specific membrane insertion of pre-fibrillar islet amyloid polypeptide and inhibition by rifampicin

    Get PDF
    AbstractHuman islet amyloid polypeptide (hIAPP) forms amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to monomeric IAPP or mature fibrils) increase membrane permeability, suggesting an important role in the disease. In the first structural study of membrane-associated hIAPP, lamellar neutron diffraction shows that oligomeric hIAPP inserts into phospholipid bilayers, and extends across the membrane. Rifampicin, which inhibits hIAPP-induced membrane permeabilisation in functional studies, prevents membrane insertion. In contrast, rat IAPP (84% identical to hIAPP, but non-amyloidogenic) does not insert into bilayers. Our findings are consistent with the hypothesis that membrane-active pre-fibrillar hIAPP oligomers insert into beta cell membranes in NIDDM

    Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.

    Get PDF
    Pancreatic arnyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet- containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical arnyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet- containing fibrils, whereas no arnyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other arnyloidosis-related diseases

    Bibliyometrik Yöntemlerle Dünya Üniversitelerinin Değerlendirilmesinde Karşılaşılan Zorluklar

    Get PDF
    URAP Araştırma Laboratuvarı, 2009 yılında Enformatik Enstitüsü bünyesinde kurulmuş olup yükseköğretim kurumlarını akademik performansları doğrultusunda değerlendirebilmek için bilimsel metodlar geliştirmeyi hedefler

    Inhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation

    Get PDF
    AbstractHuman islet amyloid polypeptide (hIAPP), co-secreted with insulin from pancreatic β cells, misfolds to form amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Like many amyloidogenic proteins, hIAPP is membrane-active: this may be significant in the pathogenesis of NIDDM. Non-fibrillar hIAPP induces electrical and physical breakdown in planar lipid bilayers, and IAPP inserts spontaneously into lipid monolayers, markedly increasing their surface area and producing Brewster angle microscopy reflectance changes. Congo red inhibits these activities, and they are completely arrested by rifampicin, despite continued amyloid formation. Our results support the idea that non-fibrillar IAPP is membrane-active, and may have implications for therapy and for structural studies of membrane-active amyloid

    Tunable Pentapeptide Self-Assembled β-Sheet Hydrogels.

    Get PDF
    Oligopeptide-based supramolecular hydrogels hold promise in a range of applications. The gelation of these systems is hard to control, with minor alterations in the peptide sequence significantly influencing the self-assembly process. We explored three pentapeptide sequences with different charge distributions and discovered that they formed robust, pH-responsive hydrogels. By altering the concentration and charge distribution of the peptide sequence, the stiffness of the hydrogels could be tuned across two orders of magnitude (2-200 kPa). Also, through reassembly of the β-sheet interactions the hydrogels could self-heal and they demonstrated shear-thin behavior. Using spectroscopic and cryo-imaging techniques, we investigated the relationship between peptide sequence and molecular structure, and how these influence the mechanical properties of the hydrogel. These pentapeptide hydrogels with tunable morphology and mechanical properties have promise in tissue engineering, injectable delivery vectors, and 3D printing applications

    Structural Elements Regulating Amyloidogenesis: A Cholinesterase Model System

    Get PDF
    Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases

    Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    Get PDF
    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited

    ESI-IMS-MS: A method for rapid analysis of protein aggregation and its inhibition by small molecules.

    Get PDF
    Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is a powerful method for the study of conformational changes in protein complexes, including oligomeric species populated during protein self-aggregation into amyloid fibrils. Information on the mass, stability, cross-sectional area and ligand binding capability of each transiently populated intermediate, present in the heterogeneous mixture of assembling species, can be determined individually in a single experiment in real-time. Determining the structural characterisation of oligomeric species and alterations in self-assembly pathways observed in the presence of small molecule inhibitors is of great importance, given the urgent demand for effective therapeutics. Recent studies have demonstrated the capability of ESI-IMS-MS to identify small molecule modulators of amyloid assembly and to determine the mechanism by which they interact (positive, negative, non-specific binding, or colloidal) in a high-throughput format. Here, we demonstrate these advances using self-assembly of Aβ40 as an example, and reveal two new inhibitors of Aβ40 fibrillation

    Amyloid-based nanosensors and nanodevices

    Full text link
    corecore