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Abstract Human islet amyloid polypeptide (hIAPP) forms
amyloid deposits in non-insulin-dependent diabetes mellitus
(NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to mono-
meric IAPP or mature fibrils) increase membrane permeability,
suggesting an important role in the disease. In the first structural
study of membrane-associated hIAPP, lamellar neutron diffrac-
tion shows that oligomeric hIAPP inserts into phospholipid
bilayers, and extends across the membrane. Rifampicin, which
inhibits hIAPP-induced membrane permeabilisation in functional
studies, prevents membrane insertion. In contrast, rat IAPP
(84% identical to hIAPP, but non-amyloidogenic) does not insert
into bilayers. Our findings are consistent with the hypothesis that
membrane-active pre-fibrillar hIAPP oligomers insert into beta
cell membranes in NIDDM.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

A number of extracellular proteins can misfold spontane-

ously and aggregate to form b-sheet rich amyloid deposits

characteristic of a variety of ‘‘protein misfolding’’ diseases,

most notably Alzheimer�s disease [1,2]. While the precise

molecular basis of such conditions is unclear, strong argu-

ments are emerging to implicate organ-specific amyloidogenic

proteins, particularly oligomeric intermediates on the pathway

to amyloid fibril formation, in disease pathogenesis (e.g. [3]).

Human islet amyloid polypeptide (hIAPP), a 37-residue pep-

tide hormone secreted by pancreatic beta cells, often forms

amyloid deposits in patients affected by NIDDM (non-insulin

dependent or type 2, maturity onset, diabetes mellitus). We re-

cently demonstrated that an intermediate, non-fibrillar, oligo-

meric form of hIAPP interacts with membranes, whereas

fibrillar hIAPP (like normal, monomeric hIAPP) lacks mem-

brane activity [4]. Interestingly, the membrane activity of

hIAPP could be inhibited independently of its ability to form

amyloid [5]. These Langmuir balance measurements provided

a further test of the idea that only the pre-fibrillar, oligomeric

form of hIAPP is membrane-active, and mature fibrils are in-

ert. Oligomeric intermediates in the �misfolding� process may

form non-specific cation channels [6], and cellular Ca2+-over-

load could account for the toxicity of hIAPP [7], and explain

why exposed cells die by both apoptosis and necrosis [4].

Unlike hIAPP, rat IAPP (rIAPP) is inert [4]. Sequence vari-

ations in IAPP are strongly associated with the ability of the

peptide to form amyloid, and susceptibility to NIDDM [8,9].

Human and cat IAPP contain the internal sequence NFGAIL

(Fig. 1), and both species can form islet amyloid and develop

NIDDM. The rat and mouse genes do not encode this motif,

and these species do not exhibit islet amyloid or NIDDM.

However, mice expressing the hIAPP transgene do develop a

NIDDM-like disease [10].

The membrane-active form of hIAPP is currently poorly de-

fined. In the present study, we identified the membrane-associ-

ated form of hIAPP in stacked phospholipid bilayers using

neutron diffraction. In order to mimic, as closely as possible,

the experimental conditions of our previous studies [4,5] the

lipid system for this work was a 50:50 mixture of palmitoyl-

oleoyl phosphatidylethanolamine (POPE) and palmitoyl-

oleoyl phosphatidylserine (POPS). We directly tested the

hypothesis that hIAPP oligomers span the bilayer, and our

findings are consistent with the idea that oligomeric hIAPP

is associated with the formation of transmembrane channels.

rIAPP was excluded from the membrane, as predicted, and rif-

ampicin, an inhibitor of the membrane activity of hIAPP [5],

prevents membrane insertion.

2. Materials and methods

2.1. Materials
hIAPP and rIAPP were obtained from Bachem (Weil am Rhein,

Germany). POPE and POPS were purchased from Avanti Polar Lipids
(Birmingham, AL) and rifampicin was from Fluka (Poole, UK). Other
chemicals were of the highest purity available.

2.2. Sample preparation and data collection
Multibilayer stacks of phospholipids and peptides were prepared as

described previously [11]. Briefly, 20 mg of a 50:50 (mol) mixture of
POPE and POPS were co-dissolved with 1% (mol) peptide in chloro-
form:trifluoroethanol (7:3, v/v) and airbrushed onto a quartz glass
slide to produce highly aligned stacks of some 50 000 or so bilayers.
Where rifampicin was required in a sample, this was added to the lipid
mixture before the peptide. The wafers were placed under vacuum for
24 h to remove the solvents before being mounted in sealed sample
cans and hydrated for 12 h at 25 �C to allow full equilibration and
the formation of IAPP oligomers [4,5]. The sample cans contained
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saturated solutions of KCl, K2NO3 or K2SO4 in 2H2O/H2O mixtures
to maintain a relative humidity of 85%, 92% or 97%, respectively,
and the 2H2O concentration was set to 8% (v/v) in the presence of each
of the three salts, and also to 20% (v/v) and 50% (v/v) in K2NO3 alone.
Diffraction data sets, comprising five orders of diffraction, were col-
lected for each of the five conditions on V1 at the Berlin Neutron-Scat-
tering Center, Hahn-Meitner-Institut, Berlin, Germany, by scanning
samples through ±2� around the predicted Bragg angle for each of
the first five orders of diffraction in turn.

2.3. Data analysis
After background subtraction, peak fitting and absorption and

Lorentz corrections, the intensities were square-rooted to provide
structure factor amplitudes. Phasing the structure factors is a two
stage process. In the first, the three sets of 8% 2H2O structure factors
are fitted to a single continuous transform, thereby fixing their
phases [11]. In the second, the 8% 2H2O phases are used as a basis
for phasing the data collected at 20% and 50% 2H2O by least-
squares fitting to straight line functions, as described previously
[12]. This two-step approach has the added advantage that an accu-
rate set of 8% 2H2O structure factors can be calculated from first
stage for increased accuracy in the second. The data were then
placed on a �relative absolute� scale using the method of White
and co-workers [13]. In this approach, the data are placed on an
absolute scale using the known neutron scattering lengths of all com-
ponent molecules. However, since the x and y dimensions are not
probed by lamellar diffraction methods, these two dimensions are
not specified in the treatment of the data. The structure factor data,
and the profiles calculated from them are, therefore, scaled to repre-
sent a single pair of lipids plus the appropriate number of water and
peptide molecules. At 1% (mol) peptide, the unit cell in this study
represents two lipid molecules and 0.02 molecules of peptide.

3. Results

3.1. Lamellar d-repeats

The lamellar spacings (d-repeats)of the samplesat92%relative

humidity were determined by optimised least squares fitting to

five orders of diffraction. 1% (mol) hIAPPdecreased the lamellar

spacing significantly from 62.09 ± 0.16 Å (means ± S.D., n = 3)

to 61.51 ± 0.20 Å (means + S.D., n = 3, P < 0.02 by t-testing),

while rIAPP increased the spacing slightly to 62.72 ± 0.57 Å

(n = 3, P > 0.05). The measurements for phospholipids with 1%

(mol) rifampicin were 56.96 ± 0.43 Å (means ± S.D., n = 3),

and forphospholipidswith 1% (mol) hIAPPand1% (mol) rifam-

picin, 58.53 ± 0.27 Å (means ± S.D., n = 3). The difference in

d-repeats between bilayers containing hIAPP and rIAPP (in the

absence of rifampicin) is 1.2 Å.Assuming an average bilayer sur-

faceareaof 72 Å2perphospholipid [14], this difference equates to

a volume increase of 87 Å3 per pair of lipids (the basis of the �rel-
ative absolute� scaling method). The total molecular volume of

IAPPcalculatedfromaminoacidvolumes in theIMBJenaImage

Library (http://www.imb-jena.de) is 4680 Å3. At 1% (mol), this

equates to an extra volume of 47 Å3 per lipid, or 94 Å3 per pair

of lipids.

The additional volume of the peptide could be accommo-

dated either by expansion of the unit cell in the Z-direction

(e.g., if the long axis of the peptide lies parallel to the bilayer),

or by insertion of hIAPP between the bilayer phospholipids, or

both. The significant decrease in the d-repeat in the presence of

hIAPP was inconsistent with the first possibility. However,

expansion of the unit cell in the plane of the bilayer, the second

possibility, is invisible to lamellar diffraction methods, and is

not constrained in the �relative absolute� method used in this

study. Moreover, the idea that the peptide inserted into the bi-

layer was consistent with the monolayer expansion seen in pre-

vious Langmuir balance measurements using the same lipids

[5]. We therefore investigated the possible membrane insertion

of hIAPP in more detail, by examining bilayer scattering

profiles.

3.2. Bilayer profiles

The neutron scattering length density profile of POPE/POPS

bilayers in the absence of peptide (Fig. 2(a)) differs from the

‘‘standard’’ profile of dioleoylphosphatidylcholine (DOPC)

[11], most noticeably because the dip in scattering length density

seen in thewater region ofDOPCbilayer profiles is barely visible

in the POPE/POPS profile. This can be explained by the different

neutron scattering lengths of the phospholipid headgroups. The

total scattering length of the PC (C5H13N), PE (C2H7N) and PS

(C3H6O2N) headgroups are �0.60 · 10�13 cm, �0.597 · 10�13

cmand 1.85 · 10�13 cm, respectively.When two sodiumcounter

ions are added to the PS headgroup (0.72 · 10�13 cm), the extra

density in the mixed lipid bilayers is readily explained.

The bilayer profile in the presence of hIAPP (Fig. 2(b)) was

remarkably similar to that of pure lipid bilayers. The total neu-

tron scattering length per peptide molecule is 98.78 · 10�12 cm

(hIAPP) or 98.51 · 10�12 cm (rIAPP). The water region was

almost indistinguishable from the pure phospholipid bilayer,

and any relatively slight differences were largely confined to

an increase in density in the fatty-acyl region. rIAPP, on the

other hand, caused major changes to the water region (Fig.

2(c)). The characteristic minimum at the edges of the profile

were completely absent, suggesting that the additional neutron

scattering length density introduced by the peptide now filled

this trough. The profile shape changes in the fatty acyl-region

were consistent with lipid rearrangements rather than peptide

penetration. A peptide orientated parallel to the bilayer is

likely to cause greater fatty-acyl disruption than a transbilayer

peptide, for two reasons: (i) the parallel peptide will have con-

tacts with a much larger number of phospholipids than a trans-

bilayer peptide and (ii) the parallel peptide only occupies part

Fig. 1. Hydrophobicity plot of hIAPP (Swiss-Prot P10997) and rIAPP
(Swiss-Prot P12969), using the whole residue hydrophobicity scale of
Wimley and White [25]. The inset shows a sequence alignment of the
two peptides. Each peptide has a disulfide-bridged loop at its N-
terminal end. The NFGAIL motif, present in species susceptible to
islet amyloid and NIDDM, is underlined. The three prolines present in
rat but not hIAPP are indicated in bold.
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of the full depth of the bilayer, and will create a potential void

that has to be filled by the fatty-acyl chains of the surrounding

lipids (Fig. 3(a)). A similar effect has been observed in another

interfacial peptide, the antimicrobial peptide protegrin-1 [15].

An alternative mechanism of bilayer thinning is based on the

observation that an incorporated molecule may alter the ther-

mal fluctuations which, in turn, can affect the inter-bilayer dis-

tance [16].

Taken together, these profiles show clear differences in the

relationship of the two peptides with the lipid bilayer. rIAPP

appears to reside exclusively in the water layer between the

bilayers, whereas hIAPP is largely excluded from this region.

This conclusion is further supported by the observation (Figs.

2(a) and (c)) that the bilayers are thinner in the presence of

rIAPP, despite the overall increase in d-repeat. In profile (a),

the two maxima in the neutron scattering length density are

caused by strong neutron scattering by the phosphates and

the oxygen rich (and hydrogen-poor) ester linkages of the

phospholipids. Although partially obscured by scattering from

the peptide, the steep gradients up towards the corresponding

region are closer together in profile (c) compared to (a).

We next examined how the inhibitor rifampicin interacted

with phospholipid bilayers in the absence of peptide. The total

neutron scattering length per rifampicin molecule is

18.67 · 10�12 cm. Previous studies of rifampicin partitioning

using derivative spectrophotometry [17] and 1H NMR and

fluorescence energy transfer [18] suggested that the compound

inserts deeply into the hydrophobic core of the bilayer, while

remaining in contact with the polar surface. With a pKa of

7.9, rifampicin has partial anionic character at neutral pH,

and this has been correlated with a stronger interaction with

zwitterionic lipids such as di-myristoyl phosphatidylcholine

(Kd = 5.09 · 104) compared to anionic lipids such as di-myri-

stoyl phosphatidylglycerol (Kd = 0.54 · 104) [18]. While in

broad agreement that rifampicin forms stable bilayers with an-

ionic or zwitterionic lipids, our neutron data reveal that rifam-

picin induces marked structural changes in the membrane (the

NMR technique used by Rodrigues [18] is blind to the details

of bilayer structure revealed by neutron diffraction).

In particular, the bilayer profiles in Figs. 2(a) and (d) show

differences in bilayer width, as revealed by the distance be-

tween the two maxima, and the bilayer thinning caused by rif-

ampicin is reflected in the reduced d-repeat of the

corresponding samples. These effects may be explained by

‘‘splaying’’ of the phospholipid headgroup regions over the

top of deeply inserted rifampicin (Fig. 3(b)). Rodrigues also

positions rifampicin close to the terminal methyls of the

fatty-acyl chains [18], consistent with our observation that

the methyl trough is broadened, as revealed by the neutron

Fig. 2. Neutron scattering length density profiles of phospholipid
bilayers: (a) 50:50 (mol) mixture of POPE and POPS; (b) 50:50 (mol)
mixture of POPE and POPS with 1% (mol) hIAPP; (c) 50:50 (mol)
mixture of POPE and POPS with 1% (mol) rIAPP; (d) 50:50
(mol) mixture of POPE and POPS with 1% (mol) rifampicin; (e)
50:50 (mol) mixture of POPE and POPS with 1% (mol) hIAPP and 1%
(mol) rifampicin hIAPP. The structure factors for bilayers hydrated
with 8% 2H2O were used to calculate the profiles, since water of this
isotopic composition has a net neutron scattering length density of
zero. The profiles have been displaced vertically, for clarity. A pair of
lipid molecules is also shown, for orientation.

Fig. 3. Top: the structure of rifampicin. Bottom: Cartoon showing
possible mechanism of bilayer thinning (arrow) when (a) a peptide
inserts parallel to the bilayer surface or (b) rifampicin inserts close to
the terminal methyl groups. For explanation, see text.
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scattering length density at the centre of the bilayer. Addition

of hIAPP to the bilayers in the presence of rifampicin thins the

bilayer even further, yet increases the d-repeat by 1.5 Å. Both

of these observations are consistent with location of the pep-

tide to the water/bilayer interfacial region, strongly implying

that rifampicin has prevented transbilayer insertion of the

peptide.

3.3. The distribution of water

Water distribution profiles were calculated by Fourier

transformations of difference structure factor profiles ob-

tained by least-squares fitting to 8%, 20% and 50% 2H2O

sample hydrations. The water profile for pure lipid bilayers,

shown in Fig. 4(a), was entirely consistent with previous neu-

tron studies of phospholipid membranes. The single peak

(split between the two ends of the profile in the figure) repre-

sents a block of water confined between adjacent bilayers in

the multi-bilayer stack. The peak can be fitted (in reciprocal

space) to a single pair of Gaussians, centred at 27.8(6) Å

from the middle of the bilayer and 5.8(2) Å wide (full width

at 1/e height).

The corresponding water distribution profile for bilayers

containing 1% (mol) rIAPP (Fig. 4(c)) was similar. Once

again, the water was confined to the outer sections of the

profile, representing the inter-bilayer hydration layer. This

block of neutron scattering length density was fitted (in reci-

procal space) to a pair of Gaussians, centred 27.1(1) Å from

the middle of the bilayer, and 4.2(5) Å wide. However, in the

IAPP profiles (Fig. 4(b)), the same amount of water was dis-

tributed very differently. Instead of being confined to the

edges, it extended across the entire width of the repeating

unit, including the phospholipid bilayer itself. The area under

the central portion of this curve corresponds to around 500

deuterons per peptide, comprising water and exchanged pro-

tons. This indicates the presence of channel-structures,

though the neutron data do not supply any information on

the number of peptides per channel. This observation sup-

ports the proposal that hIAPP, but not rIAPP, inserts in a

transbilayer orientation in the phospholipid bilayers used in

this study.

In contrast, in POPC/POPS bilayers with 1% (mol) rifampi-

cin (Fig. 4(d)), the water was largely confined to the inter-

bilayer region, and as previously noted, the lipid profile differed

in shape (cf. Fig. 4(a)). This confirms the suggestion that rifam-

picin and phospholipids form stable bilayers, but refutes the

claim [18] that the bilayer structure remains unchanged. Of

particular interest is the observation that the addition of rifam-

picin to bilayers containing hIAPP (Fig. 4(e)) constrained the

deuterons to the inter-bilayer region, in contrast to appear-

ances in the absence of rifampicin (Fig. 4(b)). However, it is

known from functional studies that rifampicin prevents bilayer

insertion of hIAPP, rather than blocking pre-inserted ‘‘chan-

nels’’ [5].

4. Discussion

In the absence of high-resolution structural data, we have

speculated that membrane-active IAPP is a misfolded, b-
sheet-rich, primary nucleation element on the amyloid path-

way that can insert spontaneously into membranes [5].

Membrane-located IAPP may then refold to give rise to trans-

membrane a-helices surrounding a central ion channel or pore

[5,6]. In this respect, IAPP may follow the pattern displayed by

calcitonin (CT), an amyloid-forming peptide that has previ-

ously been studied in detail. CT is a 32-amino acid polypeptide

hormone that shows sequence and charge distribution similar-

ities to IAPP and can adopt either a- or b-structures, depend-
ing on its environment. The former is seen in phospholipid

membranes [19], while the latter predominates in aqueous solu-

tion [20]. Using methods similar to those in the present study,

Bradshaw [19] showed that salmon CT could insert into

phospholipid bilayers containing the anionic lipid phosphati-

dylglycerol, leading to speculation that the peptide may have

ion-channel properties. This was later confirmed by Stipani

et al. [21]. Human CT formed channels at the same concentra-

tion, but not as easily as salmon CT, an observation the

authors attributed to the reduced helical content of this form

of the peptide.

Fig. 4. Difference profiles of the neutron scattering length density of
water (2H2O) in stacked phospholipid bilayers: (a) 50:50 (mol) mixture
of POPE and POPS; (b) 50:50 (mol) mixture of POPE and POPS with
1% (mol) hIAPP; (c) 50:50 (mol) mixture of POPE and POPS with 1%
(mol) rIAPP; (d) 50:50 (mol) mixture of POPE and POPS with
1% (mol) rifampicin; (e) 50:50 (mol) mixture of POPE and POPS with
1% (mol) hIAPP and 1% (mol) rifampicin hIAPP. Structure factors for
bilayers hydrated in 100% H2O were subtracted from corresponding
50% 2H2O structure factors and the result used to calculate the profiles
shown. The profiles have been displaced vertically, for clarity.
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One possible concern is that, over the several hours of a neu-

tron experiment, the amyloid-forming proteins may form fi-

brils. However, the neutron data describe highly ordered

systems, that do not change over the duration of the neutron

measurements. This is consistent with our previous lipid

bilayer work [4] and Langmuir balance work [5] that demon-

strated that the mature fibril for of IAPP is not membrane-

active. Furthermore, it is simply not known whether fibrils

can form from peptide that has already inserted into a mem-

brane. The transconformational changes involved in morphing

from a structure optimised for a hydrophobic membrane envi-

ronment to the cross-b amyloid structure could be consider-

ably greater than those involved in adopting the amyloid

conformation from aqueous solution.

Fig. 1 shows a hydrophobicity plot for the two peptides.

rIAPP is clearly less hydrophobic than hAIPP, a fact which

may contribute to the latter�s inability to insert into phospho-

lipid bilayers. However, peptide insertion into bilayers also

requires the formation of secondary structure and the se-

quence differences between the two forms of IAPP will have

a significant effect on rIAPP�s ability to form this structure.

The main differences between the sequences of hIAPP and

rIAPP are the replacement of the alanine at position 35,

and the serines at positions 38 and 39, with proline residues.

The first of these replacements disrupts the NFGAIL se-

quence linked to the formation of islet amyloid and suscepti-

bility to NIDDM [8,9]. Proline is a well-established

‘‘breaker’’ of both a-helix and b-sheet structures in globular

proteins, because the closed loop structure of the side chain

prevents the peptide backbone from adopting the u and w
angles required for either of these secondary structures. How-

ever, proline frequently occurs in the transmembrane helices

of integral membrane proteins, particularly transport pro-

teins, despite the fact that a kink is introduced wherever a

proline residue interrupts a helical section. Li and Derber

[22] resolved this apparent contradiction by postulating differ-

ent rules governing structure in the hydrophobic environment

of membranes, and showed that the helical propensity of pro-

line was greatly enhanced in the membrane-mimetic environ-

ments of both lipid micelles and organic solvents. In studies

of a proline to alanine replacement in a single-spanning mem-

brane protein of bacteriophage IKe, Li and Derber [22]

showed that proline does not interfere with helix formation,

but does prevent the formation of b-sheet. The intrinsic

capacity of proline to disrupt b-structures has also been dem-

onstrated by showing that prolines are excluded from trans-

membrane b-strands in mutagenised OmpA porins that

retain the ability to assemble into a membrane-spanning b-
barrel [23]. Wigley et al. [24] has proposed that the abun-

dance of proline in transmembrane helices can be entirely

explained by the ability of the residue to block b-structures.
The advantage conferred by preventing the formation of

a b-sheet outweighs the entropic disadvantage in helix

distortion.

In this context, it is instructive to consider the differences in

sequence, amyloidogenicity and membrane-associated neutron

scattering profiles of hIAPP and rIAPP. Following the argu-

ments outlined above, it is tempting to suggest that rIAPP is

non-amyloidogenic because the introduction of a proline into

the NFGAIL sequence prevents the peptide from adopting

the b-structure necessary for amyloid fibre formation. How-

ever, this should not significantly interfere with the peptide�s

ability to insert into phospholipid membranes, if the mem-

brane-active form is a-helical (like the model for CT). Previous

studies, and our current neutron diffraction data, indicate that

this is not so. Rats are not susceptible to ‘‘NIDDM’’, and the

neutron data suggest that rIAPP does not insert into phospho-

lipid membranes.

This could be taken as evidence that the membrane-active

form of hIAPP is not a-helical, until it is remembered that

rIAPP possesses not one but three extra prolines. The disrup-

tive effect of three prolines in close proximity (two of them

consecutive residues) is likely to block the formation of both

a- and b-structures by the peptide. In the future work, it will

clearly be of interest to probe the secondary, tertiary and qua-

ternary structure of membrane-associated hIAPP in detail.

In conclusion, our data represent the first study of mem-

brane-associated IAPP to use diffraction-based techniques.

We have shown that oligomeric hIAPP interacts with

phospholipid membranes to form transbilayer structures.

rIAPP is excluded from the membrane (as predicted), and

the insertion of hIAPP is inhibited by rifampicin.
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