278 research outputs found

    Adrenal involvement in the biostimulatory effect of bulls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to evaluate if cortisol concentrations are associated with the resumption of luteal activity in postpartum, primiparous cows exposed to bulls. The hypotheses were that 1) interval from start of exposure to resumption of luteal activity; 2) proportions of cows that resumed luteal function during the exposure period; and 3) cortisol concentrations do not differ among cows exposed or not exposed to bulls (Exp. 1), and cows continuously exposed to bull or steer urine (Exp. 2).</p> <p>Methods</p> <p>In Exp. 1, 28 anovular cows were exposed (BE; n = 13) or not exposed (NE; n = 15) to bulls for 30 d at 58 d after calving. In Exp. 2, 38 anovular cows were fitted with a controlled urine delivery device at 45 d after calving and exposed continuously (24 h/d) to bull (BUE; n = 19) or steer (SUE; n = 19) urine. Length of exposure was ~64 d. Blood samples were collected from each cow on D 0 and every 3 d throughout exposure periods in both experiments and assayed for progesterone. Cortisol was assayed in samples collected on D 0, 8, 16, and 24 in Exp. 1; and, D 0, 19, 38, and 57 in Exp. 2.</p> <p>Results</p> <p>In Exp. 1, interval from the start of exposure to resumption of luteal activity was shorter (P < 0.05) for BE cows than NE cows, similarly, more (P < 0.05) BE cows than NE cows resumed luteal function during the exposure period. In Exp. 2, there was no difference in intervals from the start of exposure to resumption of luteal activity and proportions of cows that resumed luteal function during the exposure period between BUE and SUE cows. In Exp. 1, there was no difference in cortisol concentrations between BE and NE cows at the start of the experiment (D 0), however, cortisol concentrations were greater (P < 0.05) in BE cows than NE cows on D 9, 18, and 27. In Exp. 2, cortisol concentrations were higher for BUE than SUE cows on D 0 (P < 0.05), thereafter cortisol decreased (P < 0.05) but did not differ between BUE and SUE cows.</p> <p>Conclusion</p> <p>We conclude that the physical presence of bulls stimulates resumption of luteal activity and is coincident with increased cortisol concentrations, and hypothesize a possible association between adrenal activation and the biostimulatory effect of bulls.</p

    Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy

    Full text link
    We examined binding to excitatory amino acid and inhibitory amino acid receptors in frozen hippocampal sections prepared from surgical specimens resected from 8 individuals with medically refractory temporal lobe epilepsy. The excitatory receptors studied included N -methyl-D-aspartate (NMDA), strychnine-insensitive glycine, phencyclidine, and quisqualate. The inhibitory receptors studied were gamma-aminobutyric acid type A (GABA A ) and benzodiazepine. Excitatory and inhibitory amino acid receptor binding were differentially altered in the patients with temporal lobe epilepsy in comparison to 8 age-comparable autopsy control subjects, and changes in receptor binding were regionally selective in four areas. Binding to phencyclidine receptors associated with the NMDA channel was reduced by 35 to 70% in all regions in the hippocampi of the patients. In contrast, binding to the NMDA recognition site and its associated glycine modulatory site was elevated by 20 to 110% in the cornu ammonis (CA) 1 area and dentate gyrus of the hippocampus of the patients. Binding to these sites was unaffected in area CA4. Binding to the quisqualate-type excitatory amino acid receptor was unchanged in all regions except the stratum lacunosum moleculare CA1, where it was increased by 63%. GABA A and benzodiazepine receptor binding was reduced by 20 to 60% in CA1 and CA4, but unchanged in dentate gyrus. The data indicate that excitatory and inhibitory amino acid receptors are altered in the hippocampus of patients with temporal lobe epilepsy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50343/1/410290513_ftp.pd

    A Selective Interplay between Aberrant EPSPKA and INaP Reduces Spike Timing Precision in Dentate Granule Cells of Epileptic Rats

    Get PDF
    Spike timing precision is a fundamental aspect of neuronal information processing in the brain. Here we examined the temporal precision of inputā€“output operation of dentate granule cells (DGCs) in an animal model of temporal lobe epilepsy (TLE). In TLE, mossy fibers sprout and establish recurrent synapses on DGCs that generate aberrant slow kainate receptorā€“mediated excitatory postsynaptic potentials (EPSPKA) not observed in controls. We report that, in contrast to time-locked spikes generated by EPSPAMPA in control DGCs, aberrant EPSPKA are associated with long-lasting plateaus and jittered spikes during single-spike mode firing. This is mediated by a selective voltage-dependent amplification of EPSPKA through persistent sodium current (INaP) activation. In control DGCs, a current injection of a waveform mimicking the slow shape of EPSPKA activates INaP and generates jittered spikes. Conversely in epileptic rats, blockade of EPSPKA or INaP restores the temporal precision of EPSPā€“spike coupling. Importantly, EPSPKA not only decrease spike timing precision at recurrent mossy fiber synapses but also at perforant path synapses during synaptic integration through INaP activation. We conclude that a selective interplay between aberrant EPSPKA and INaP severely alters the temporal precision of EPSPā€“spike coupling in DGCs of chronic epileptic rats
    • ā€¦
    corecore