289 research outputs found

    The incidence of clinical malaria detected by active case detection in children in Ifakara, southern Tanzania

    Get PDF
    Between July 2000 and June 2001, we used weekly active case detection (ACD) of clinical malaria episodes in 618 children aged <5 years to describe the epidemiology of malaria in Ifakara, southern Tanzania. Plasmodium falciparum-positive blood slides prepared from children with axillary temperature ⩾ 37.5°C were used to define clinical malaria and a rolling cross-sectional survey documented the prevalences of parasitaemia and anaemia. A random subsample of children was visited daily for 1 month at the end of the study to assess the effect of more frequent visits on estimated incidence rates. Only 50 (8%) children had 1 or more episodes of clinical malaria during the year, an overall incidence of 0.275 episodes/100 child-weeks-at-risk, with no age dependence. The maximum parasite prevalence of 25% was reached in children aged 4 years. The incidence of illness was significantly lower in children visited daily than in those visited weekly., suggesting a marked effect of frequent visits on estimated incidence rates. We conclude that the age pattern of malaria detected through ACD is a more robust epidemiological indicator than absolute incidence rate estimates and that, in contrast to the surrounding area, Ifakara town is subject to only moderate perennial malaria transmissio

    Linkage design effect on the reliability of surface-micromachined microengines driving a load

    Full text link
    The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. The authors have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, the authors used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, they analyzed the statistical data yielding a lifetime (t{sub 50}) for median cycles to failure and {sigma}, the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed

    Failure modes in surface micromachined microelectromechanical actuators

    Full text link
    In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. The authors identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model based operational methods, and chemical surface treatments

    The effect of frequency on the lifetime of a surface micromachined microengine driving a load

    Full text link
    Experiments have been performed on surface micromachined microengines driving load gears to determine the effect of the rotation frequency on median cycles to failure. The authors did observe a frequency dependence and have developed a model based on fundamental wear mechanisms and forces exhibited in resonant mechanical systems. Stressing loaded microengines caused observable wear in the rotating joints and in a few instances led to fracture of the pin joint in the drive gear

    Enhanced pressure drop, planar contraction flows and continuous spectrum models

    Get PDF
    This study addresses a rheological problem that has been outstanding now for the past few decades, raised by the experimental findings of Binding and Walters [1]. There, it was established experimentally that planar contraction flows for some Boger fluids could display enhanced pressure-drops above Newtonian flows, as was the case for their tubular counterparts. Nevertheless, flow-structures to achieve this result were reported to be markedly different, planar to circular. In this article, it is shown how predictive differential-viscoelastic solutions with continuum models can replicate these observations. Key to this success has been the derivation of a new definition for the third-invariant of the rate-of-deformation tensor in planar flows, mimicking that of the circular case [2], [3]. This provides a mechanism to successfully incorporate dissipation within planar flows, as performed earlier for tubular flows. Still, to reach the necessary large deformation-rates to achieve planar enhanced pressure-drops, and whilst maintaining steady flow-conditions, it has been found crucial to invoke a continuous-spectrum relaxation-time model [3]. The rheological power and flexibility of such a model is clearly demonstrated, over its counterpart Maxwellian single-averaged relaxation-time approximation; the latter transcending the boundaries of steady-to-unsteady flow to manifest equivalent levels of enhanced pressure-drops. Then, the role of extensional viscosity and first normal-stress difference, each play their part to achieve such planar enhanced pressure-drops. As a by-product, the distinctive planar ‘bulb-flow’ structures discovered by Binding and Walters [1], absent in tubular flows, are also predicted under the associated regime of high deformation-rates where enhanced pressure-drop arise

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    A note on ROC analysis and non-parametric estimate of sensitivity

    Full text link
    In the signal detection paradigm, the non-parametric index of sensitivity A ′, as first introduced by Pollack and Norman (1964), is a popular alternative to the more traditional d ′ measure of sensitivity. Smith (1995) clarified a confusion about the interpretation of A ′ in relation to the area beneath proper receiver operating characteristic (ROC) curves, and provided a formula (which he called A ′′) for this commonly held interpretation. However, he made an error in his calculations. Here, we rectify this error by providing the correct formula (which we call A ) and compare the discrepancy that would have resulted. The corresponding measure for bias b is also provided. Since all such calculations apply to “proper” ROC curves with non-decreasing slopes, we also prove, as a separate result, the slope-monotonicity of ROC curves generated by likelihood-ratio criterion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45761/1/11336_2003_Article_1119.pd

    Prevention and control of multi-drug-resistant Gram-negative bacteria: recommendations from a Joint Working Party

    Get PDF
    Multi-drug-resistant (MDR) Gram-negative bacterial infections have become prevalent in some European countries. Moreover, increased use of broad-spectrum antimicrobial agents selects organisms with resistance and, by increasing their numbers, increases their chance of spread. This report describes measures that are clinically effective for preventing transmission when used by healthcare workers in acute and primary healthcare premises. Methods for systematic review 1946–2014 were in accordance with SIGN 501 and the Cochrane Collaboration;2 critical appraisal was applied using AGREEII.3 Accepted guidelines were used as part of the evidence base and to support expert consensus. Questions for review were derived from the Working Party Group, which included patient representatives in accordance with the Patient Intervention Comparison Outcome (PICO) process. Recommendations are made in the following areas: screening, diagnosis and infection control precautions including hand hygiene, single-room accommodation, and environmental screening and cleaning. Recommendations for specific organisms are given where there are species differences. Antibiotic stewardship is covered in a separate publication

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Particles-vortex interactions and flow visualization in He4

    Full text link
    Recent experiments have demonstrated a remarkable progress in implementing and use of the Particle Image Velocimetry (PIV) and particle tracking techniques for the study of turbulence in He4. However, an interpretation of the experimental data in the superfluid phase requires understanding how the motion of tracer particles is affected by the two components, the viscous normal fluid and the inviscid superfluid. Of a particular importance is the problem of particle interactions with quantized vortex lines which may not only strongly affect the particle motion, but, under certain conditions, may even trap particles on quantized vortex cores. The article reviews recent theoretical, numerical, and experimental results in this rapidly developing area of research, putting critically together recent results, and solving apparent inconsistencies. Also discussed is a closely related technique of detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
    corecore