145 research outputs found

    Ajit Varki: On the origin of maladies

    Get PDF
    Some say language makes us human, others say it's art or free will. Ajit Varki points out how our diseases set us apart from the apes

    Escherichia coli Subtilase Cytotoxin

    Get PDF
    Subtilase cytotoxin (SubAB) is the prototype of a new AB5 toxin family produced by a subset of Shiga toxigenic Escherichia coli (STEC) strains. Its A subunit is a subtilase-like serine protease and cytotoxicity for eukaryotic cells is due to a highly specific, single-site cleavage of BiP/GRP78, an essential Hsp70 family chaperone located in the endoplasmic reticulum (ER). This cleavage triggers a severe and unresolved ER stress response, ultimately triggering apoptosis. The B subunit has specificity for glycans terminating in the sialic acid N-glycolylneuraminic acid. Although its actual role in human disease pathogenesis is yet to be established, SubAB is lethal for mice and induces pathological features overlapping those seen in the haemolytic uraemic syndrome, a life-threatening complication of STEC infection. The toxin is also proving to be a useful tool for probing the role of BiP and ER stress in a variety of cellular functions

    Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid

    Get PDF
    The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc “xeno-autoantibody” response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans

    Microbiota Control of Malaria Transmission

    Get PDF
    This publication hasn't any creative commons license associated.This deposit is composed by the main article, and it hasn't any supplementary materials associated.The deposited article is a post-print version.Stable mutualistic interactions between multicellular organisms and microbes are an evolutionarily conserved process with a major impact on host physiology and fitness. Humans establish such interactions with a consortium of microorganisms known as the microbiota. Despite the mutualistic nature of these interactions, some bacterial components of the human microbiota express immunogenic glycans that elicit glycan-specific antibody (Ab) responses. The ensuing circulating Abs are protective against infections by pathogens that express those glycans, as demonstrated for Plasmodium, the causative agent of malaria. Presumably, a similar protective Ab response acts against other vector-borne diseases.Bill & Melinda Gates Foundation grant: (OPP1024563); Fundação para a Ciência e Tecnologia grants: (RECI-IMI-IMU-0038-2012; SFRH/BD/51176/2010); European Research Council grant: (ERC-2011-AdG 294709-DAMAGECONTROL).info:eu-repo/semantics/publishedVersio

    Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    Get PDF
    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates

    Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents

    Get PDF
    Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets

    Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups: INTRACELLULAR β-O-LINKED N-GLYCOLYLGLUCOSAMINE (GlcNGc), UDP-GlcNGc, AND THE BIOCHEMICAL AND STRUCTURAL RATIONALE FOR THE SUBSTRATE TOLERANCE OF β-O-LINKED β-N-ACETYLGLUCOSAMINIDASE

    Get PDF
    TheO-GlcNAcmodificationinvolvestheattachmentofsingle-O-linkedN-acetylglucosamine residues to serine and threo-nine residues of nucleocytoplasmic proteins. Interestingly, pre-vious biochemical and structural studies have shown thatO-GlcNAcase (OGA), the enzyme that removesO-GlcNAc fromproteins, has an active site pocket that tolerates variousN-acylgroups in addition to theN-acetyl group of GlcNAc. Theremarkable sequence and structural conservation of residuescomprising this pocket suggest functional importance. Wehypothesized this pocket enables processing of metabolic vari-ants ofO-GlcNAc that could be formed due to inaccuracy withinthe metabolic machinery of the hexosamine biosynthetic path-way. In the accompanying paper (Bergfeld, A. K., Pearce, O. M.,Diaz, S. L.,Pham, T., and Varki, A. (2012)J. Biol. Chem.287,28865–28881),N-glycolylglucosamine (GlcNGc) wasshown to be acatabolite of NeuNGc. Here, we show that the hexosamine sal-vage pathway can convert GlcNGc to UDP-GlcNGc, which isthen used to modify proteins withO-GlcNGc. The kinetics of incorporation and removal ofO-GlcNGc in cells occur in adynamic manner on a time frame similar to that ofO-GlcNAc.Enzymatic activity ofO-GlcNAcase (OGA) toward a GlcNGcglycoside reveals OGA can process glycolyl-containing sub-strates fairly efficiently. A bacterial homolog (BtGH84) of OGA,from a human gut symbiont, also processesO-GlcNGc sub-strates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance andbinding of GlcNGc. Together, these results demonstrate thatanalogs of GlcNAc, such as GlcNGc, are metabolically viablespecies and that the conserved active site pocket of OGA likelyevolved to enable processing of mis-incorporated analogs ofO-GlcNAc and thereby prevent their accumulation. Such plas-ticity in carbohydrate processing enzymes may be a generalfeature arising from inaccuracy in hexosamine metabolicpathways
    corecore