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Abstract 15 

Stable mutualistic interactions between multicellular organisms and microbes are an 16 

evolutionarily conserved process with major impact to host physiology and fitness. 17 

Humans establish such interactions with a consortium of microorganisms known as the 18 

microbiota. Despite the mutualistic nature of these interactions, some bacterial 19 

components of the human microbiota express immunogenic glycans that elicit glycan-20 

specific antibody (Ab) responses. The ensuing circulating Ab are protective against 21 

infections by pathogens that express those glycans, as demonstrated for Plasmodium, the 22 

causative agent of malaria. Presumably, a similar protective Ab response acts against 23 

other vector-borne diseases. 24 

 25 

Microbiota and Natural Antibodies 26 

Humans establish structured and often-mutualistic interactions with their microbiota (see 27 

Glossary), which are vertically transmitted and, to some extent, maintained throughout 28 
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life via horizontal transmission [1]. This occurs mainly at epithelial interfaces such as the 29 

intestinal and urogenital tracts, as well as at the lung and skin, where tightly juxtaposed 30 

epithelial cells limit systemic access to potentially damaging microbes and/or their 31 

component parts [2]. Resident immune cells at these epithelial barriers sense components 32 

of the microbiota via pattern recognition receptors (PRR), eliciting a host response that 33 

maintains the functional integrity of epithelial barriers [3]. This involves the production 34 

of mucus and anti-microbial peptides as well as IgA and IgM Ab [4, 5] that transverse 35 

epithelial barriers and bind to immunogenic components of the microbiota [6], 36 

modulating its composition and impact on host physiology [4, 5]. Here, we explore how 37 

Ab responses directed against the Gal-3Gal (-gal) glycan expressed by bacteria in 38 

the gut microbiota, confer protection against malaria [7] and presumably other vector-39 

borne diseases. 40 

 41 

Glycan-specific natural Ab 42 

Humans have relatively high levels of circulating anti-glycan Ab [8, 9], including -gal-43 

specific Ab that account for up to ~1-5% of circulating IgM and IgG and are produced by 44 

1% of the B cell repertoire of healthy adult individuals [10-12]. Anti-glycan Ab, 45 

including -gal-specific Ab, are often referred to as natural Ab (NAb) because they are 46 

present in the circulation of healthy individuals in the “absence” of a traceable 47 

immunization [13]. While animals maintained under germ-free (GF) conditions can 48 

produce relatively low levels of NAb, production of physiologic levels of circulating 49 

glycan-specific Ab require the establishment of host microbiota interactions [7, 14]. In 50 

keeping with this notion, a significant proportion of circulating NAb recognize glycans 51 

expressed by components of the gut microbiota [15], as illustrated for anti-blood group 52 

NAb [16], which include -gal-specific NAb [17].  53 

 Based on the immediate glycan recognition at the outer surface of microorganisms, 54 

NAb act as a first-line of defense against virus and bacteria [18, 19] and possibly 55 

protozoan parasite [20] infections (reviewed in [21] and [22]). When present above a 56 

certain threshold level at the time of infection, circulating NAb can target pathogens as 57 

soon as these breech epithelial barriers [21]. Activation of the classical complement 58 



 

Soares and Yilmaz; Microbiota Control of Malaria Transmission 

 

 3 

pathway and Ab-dependent cell-mediated cytotoxicity, limit pathogen expansion and 59 

dissemination into vital organs [19](reviewed in [21]).  60 

 Anti-glycan NAb, including -gal-specific Ab, are generated in mice by long-lived B 61 

cells known as B1 cells [8, 23, 24] as well as by marginal zone B cells in the spleen 62 

[25](reviewed in [21]). The production of these Ab is triggered upon engagement of PRR 63 

and/or the B cell receptor by microbial associated molecular patterns, including glycans 64 

such as those in bacterial lipopolysaccharide (LPS). This results in the generation of low 65 

affinity (Kd=10-4-10-7 M) glycan-specific IgM Ab, via a mechanism that does not require 66 

T cell help and does not involve immunoglobulin (Ig) class switch recombination or 67 

affinity maturation. However, some glycan-specific Ab responses are associated with the 68 

production of high affinity (Kd>10-7 M), T cell dependent IgG Ab [13, 26].  69 

 Expression of identical or similar glycans by pathogens and their mammalians hosts 70 

raises the question as to how Ab responses targeting these glycans are generated. 71 

Presumably, glycan-specific Ab responses should only target xeno-glycans that are not 72 

expressed as part of self [27], thus avoiding autoimmunity and disease [13]. This 73 

constraint was circumvented for some self-glycans such as -gal through an 74 

evolutionarily-based process whereby loss-of-function mutations in genes responsible for 75 

the expression of such glycans were selected for and fixed in populations [28] (Box 1, 76 

Box 2 and Figure 1). 77 

 In contrast to humans, most mammals including mice carry a functional GGTA1 78 

gene, which encodes a UDP-galactose:-D-galactosyl-1,4-N-acetyl-D-glucosaminide -79 

1,3-galactosyltransferase (GT) that generates the Gal-3Galβ1-4GlcNAc-R (-gal) 80 

glycan (Box 1, Box 2 and Figure 1). Mammals also express a functional 81 

isoglobotriaosylceramide synthase (iGb3S) gene, which encodes a UDP-gal:-D-82 

galactosyl-1,4-glucosyl-ceramide GT that generates the Gal-3Gal-4Glc-83 

ceramide glycan (Box 1, Box 2 and Figure 1). As a result, -gal-specific B cells are 84 

purged from the B cell repertoire of adult mice, which fail to generate anti--gal Ab 85 

responses. Deletion of the Ggta1 gene in mice eliminates the expression of Gal-86 

3Galβ1-4GlcNAc-R glycan and allows for the production of anti--gal Ab [29]. This is 87 

possible despite the expression of Gal-3Gal-4Glc-ceramide [30], presumably 88 
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because -gal-specific Ab can discriminate Gal-3Galβ1-4GlcNAc from Gal-89 

3Gal-4Glc-ceramide, based on GlcNAc or Glc-ceramide recognition, respectively [31, 90 

32]. A similar mechanism is likely to explain how -gal-specific Ab responses are 91 

possible in individuals expressing the Gal-3Gal(Fuc-2)-3GlcNAc B blood group 92 

antigen, suggesting again that anti--gal Ab can discriminate Gal-3Galβ1-4GlcNAc or 93 

Gal-3Gal-4Glc-ceramide from Gal-3Gal(Fuc-2)-3GlcNAc [12] (Box 1). 94 

 As argued above for other glycan-specific NAb responses, steady state production of 95 

-gal-specific Ab in humans is sustained most probably by continuous exposure to 96 

bacterial components of the microbiota that express -gal [14, 33]. These are likely to 97 

include members of the Enterobacteriaceae family of Gram-negative bacteria, such 98 

Klebsiella, Serratia and Escherichia (E.) coli spp. as well as Gram-positive bacteria, i.e. 99 

Lactobacillus casei [14]. In Enterobacteriaceae, -gal is conjugated to LPS at the outer 100 

surface of the cell wall, as illustrated for Salmonella minnesota and Klebsiella spp. [14]. 101 

In some cases, -gal is conjugated to the O-antigen of LPS, as illustrated for E. coli 102 

O86:B7 [34]. 103 

 E. coli O86:B7 is a pathobiont of the human microbiota that is likely to contribute to 104 

the production of circulating anti--gal Ab. E. coli O86:B7 expresses the Gal-105 

3Gal(Fuc-2)-3(or4)GlcNAc glycan conjugated to the to the O-antigen of LPS [34] 106 

and feeding live or dead E. coli O86:B7 to humans triggers the production of circulating 107 

anti--gal Ab directed against the Gal-3Gal(Fuc-2)-3(or4)GlcNAc human B 108 

blood group [17]. Moreover, when colonized by E. coli O86:B7, GGTA1 deficient 109 

(Ggta1-/-) mice produce anti--gal IgM Ab, in the range of adult individuals from a 110 

malaria endemic region [7]. Expression of Gal-3Gal by E. coli O86:B7 is under the 111 

control of a  GT) encoded by the wbnI gene, 112 

which shares high homology with other genes expressed in related Enterobacteriaceae 113 

such as E. coli O55:H7 [34]. To what extent orthologue of the wbnI gene control the 114 

expression of -gal glycan in other bacterial species that express -gal conjugated to 115 

LPS, e.g. Bacteroides ovatus, Helicobacter mustelae, Shigella dysenteriae, Klebsiella 116 
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pneumoniae, Campylobacter coli, Serratia marcescens or Salmonella typhimurium 117 

remains to be established [35]. 118 

 Levels of circulating anti--gal IgM Ab in humans are low to undetectable during 119 

the first years of post-natal life [7, 10], which is also the case for NAb directed against 120 

other glycans [8], including ABO blood group glycans [36]. Levels of circulating anti--121 

gal Ab increase over time to reach steady at 3-5 years of age [36, 37]. Maternal transfer 122 

of anti--gal IgG Ab accounts for the relatively high levels of these Ab in the circulation 123 

of newborns, decreasing during the first few months of post-natal life and increasing 124 

thereafter to reach a steady state levels within the first 3-5 years [7, 36]. Anti--gal IgA 125 

NAb are also detected in secretory fluids, such as saliva and colostrum and as such can 126 

be vertically transferred by the mother to newborns [38]. 127 

 One possible explanation for the relative low levels of circulating -gal-specific IgM 128 

NAb of newborns is that the early B cell repertoire lacks glycan-specific B cells, though 129 

to arise thereafter either spontaneously or in response to microbiota colonization [8]. 130 

Consistent with this notion gut colonization by E. coli and Bifidobacteria promotes B 131 

cell maturation in newborns and infants [39]. Moreover, newborns harbor a simplified 132 

microbiota [40], which may be linked to the impact of newborn dietary on microbiota 133 

composition [41]. In addition, some components of the newborns’ microbiota exert a 134 

negative impact over potentially virulent Enterobacteriaceae that express -gal, i.e. 135 

colonization resistance [42]. This protective mechanism that prevents enteric infections 136 

during early post-natal life, might also avoid exposure to immunogenic bacteria 137 

expressing -gal during a developmental time frame likely inducing a state of 138 

immunological tolerance [43].  139 

 140 

Expression of -gal by Plasmodium and other related protozoan parasites 141 

Malaria is transmitted to humans through inoculation of a relatively small number of 142 

Plasmodium sporozoites, upon the bite of an infected female Anopheles mosquito [44]. 143 

Despite having a reportedly poor glycosylation profile [45], Plasmodium spp. express -144 

gal glycans detected at the surface of sporozoites [7] as well during the blood stage of 145 
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infection [7, 46-48]. In Plasmodium sporozoites -gal glycans are conjugated to 146 

glycosylphosphatidylinositol (GPI)-anchored proteins [7, 49], other than 147 

circumsporozoite protein (CSP) [7], a (GPI)-anchored protein that covers the surface of 148 

Plasmodium sporozoites [50]. Whether these -gal glycans are conjugated directly to 149 

proteins or lipids and their exact structure remains to be established.  150 

 A 1,3GT orthologous gene has been characterized in vector-borne protozoan 151 

parasites from Trypanosomes (T.) spp. [51], which include T. brucei, the causative agent 152 

of African human trypanosomiasis, i.e. sleeping sickness and T. cruzi, the causative 153 

agent of American trypanosomiasis, i.e. Chagas’ disease. Both diseases are transmitted to 154 

humans via the inoculation of Trypanosoma metacyclic trypomastigotes in the skin, 155 

either through the bite of a tsetse fly from the Glossina spp. or upon deposition of 156 

infected feces by blood-sucking Triatomine bugs, respectively. T. brucei [52] and T. 157 

cruzi [53, 54] metacyclic trypomastigotes express -gal glycans, conjugated to GPI-158 

anchored proteins as well to other glycoproteins and glycolipids. Presumably this 159 

explains why individuals infected by T. cruzi produce high levels of circulating anti--160 

gal Ab [54-56]. Whether this is also the case for T. brucei infection is not clear. 161 

 Leishmania (L.) is another genus of trypanosomatid protozoan parasites that 162 

expresses -gal [55, 57], as illustrated for L. chagasi, the causative agent of human 163 

visceral leishmaniasis and L. mexicana or braziliensis, the causative agent of localized 164 

cutaneous and mucocutaneous leishmaniasis. Infection is transmitted to humans via 165 

inoculation of promastigotes upon the bite of sand flies from the Phlebotomine spp. [58]. 166 

Leishmaniasis is associated with the production of high levels of circulating anti--gal 167 

Ab, as illustrated in humans [56] and Ggta1-/- mice [59]. Ab directed against -gal bind 168 

to the lipid fraction and associated GPI anchors of Leishmania promastigotes [60, 61] 169 

and opposite to the flagellar pocket of Leishmania amastigotes [55, 62]. This suggests 170 

that the -gal glycans expressed by Leishmania spp. are immunogenic and that -gal-171 

specific Ab might confer to leishmaniasis, which remains to be tested experimentally  172 

 173 
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Targeting of Plasmodium and possibly other vector-borne protozoan parasites by -174 

gal-specific NAb 175 

Circulating anti--gal IgM and IgG Ab target Plasmodium sporozoites immediately after 176 

inoculation in the skin, conferring sterile protection against malaria transmission 177 

[7](Figure 2). Consistent with their well-established cytolytic effect [63], anti--gal Ab 178 

kill Plasmodium sporozoites via a Fc-dependent mechanism involving the activation of 179 

the classical complement pathway [7] (Figure 2). Presumably, this explains why in 180 

malaria endemic areas, individuals with higher levels of circulating anti--gal IgM Ab 181 

have decreased risk of P. falciparum infection, as compared to infected individuals [7].  182 

 Considering that circulating -gal-specific IgM Ab can be produced in response to 183 

-gal expressing bacteria in the microbiota, gut colonization by those bacteria should 184 

confer protection against malaria transmission. In support of this hypothesis Ggta1-/- 185 

mice are protected from malaria transmission when (mono)colonized by the E. coli 186 

O86:B7 strain that expresses high levels of -gal glycans [7] (Figure 2). This protective 187 

effect is mediated by the production of circulating -gal-specific IgM Ab, as 188 

demonstrated by loss of protection in E. coli O86:B7 colonized Ggta1-/-µS-/- mice, which 189 

lack circulating IgM [7]. Whether a similar protective mechanism occurs in humans 190 

when colonized by this or other bacterial strains expressing -gal remains to be 191 

established. The recent observation that enteric colonization by Enterobacteriaceae, 192 

including E. coli and Shigella, is associated with reduced risk of P. falciparum infection 193 

in individuals from malaria endemic areas supports this hypothesis [64]. Whether these 194 

Enterobacteriaceae include -gal expressing bacteria that trigger the production of 195 

circulating -gal-specific IgM Ab [7, 65] conferring protection against malaria 196 

transmission [7], remains to be established (Figure 2). 197 

 The protective effect exerted by -gal-specific IgM Ab against malaria appears to be 198 

restricted to the initial pre-hepatic stage of infection, targeting Plasmodium sporozoites 199 

in the skin but not in blood [7]. Moreover, neither -gal-specific IgM nor IgG Ab appear 200 

to target the later, liver or blood stages of Plasmodium infection in mice and as such do 201 

not influence parasitemia or the pathogenesis of severe forms of malaria in mice, e.g., 202 
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experimental cerebral malaria [7]. The reasons for this are not clear but might relate to 203 

specific biologic aspects of IgM Ab, as discussed elsewhere [22]. 204 

 Given the expression of -gal by trypanosomatid protozoa parasites from 205 

Trypanosoma and Leishmania spp., it is reasonable to hypothesize that anti--gal NAb 206 

might exert a similar protective effect against transmission of these vector-borne 207 

pathogens. While this has not been formally tested, there is experimental evidence to 208 

support this hypothesis. Anti--gal Ab can target T. cruzi for complement and cell-209 

mediated cytotoxicity in vitro, thereby reducing parasite infectivity in mice [66, 67]. 210 

Whether this is also the case for T. brucei was, to the best of our knowledge, not 211 

established. Even though -gal-specific Ab can target Leishmania spp. promastigotes 212 

and amastigotes, it is not clear whether they confer protection against leishmaniasis. 213 

Possibly, these parasites evolved to escape the cytotoxic effect of circulating anti-glycan 214 

NAb including -gal-specific IgM NAb [68, 69]. Supporting this notion, Trypanosoma 215 

spp. can evade Ab cytotoxicity via different strategies, including antigenic variation of 216 

-gal-conjugated GPI-anchored variant surface glycoproteins [51] or shedding of -gal 217 

glycolipids, as demonstrated for T. brucei [69]. Moreover rapid establishment of 218 

intracellular infection by T. cruzi or Leishmania might also contribute to escape -gal-219 

specific IgM cytotoxicity [70].  220 

 221 

Evolutionary constraints imposed by α-gal specific Ab on vector-borne pathogens 222 

Cytolytic targeting of Plasmodium and eventually other protozoan parasites by -gal-223 

specific IgM Ab would be expected to select loss-of-function mutations in putative 224 

parasite  GT orthologous genes involved in -gal expression, a host pathogen 225 

antagonistic co-evolution process known as the “Red Queen Hypothesis” [71]. There is 226 

indeed evidence that some families of glycosyltransferase genes were purged out of the 227 

Plasmodium genome [72]. However, this is less likely to occur when the 228 

glycosyltransferase is required to support the life cycle of these parasites in their 229 

arthropod vectors, which could be the case for  GT. Yet another possibility is that 230 
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expression -gal glycans is controlled by putative  GT orthologous genes from the 231 

parasites as well as their arthropod vectors. 232 

 Plasmodium spp. might not express O-glycans, i.e. glycans covalently attached to 233 

proteins at serine/threonine (Ser/Thr) residues, but can express short N-glycans, i.e. 234 

glycans covalently attached to proteins at asparagine (Asn), as illustrated on the surface 235 

of P. falciparum trophozoites and schizonts [73]. Moreover Plasmodium spp. can 236 

synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and guanosine 237 

diphosphate mannose (GDP-Man), the two -gal precursors used by  GT [74]. It 238 

is possible therefore that N-linked and perhaps O-linked oligosaccharide synthesis occurs 239 

in Plasmodium spp. via an unconventional and yet non-characterized pathway. However, 240 

a Plasmodium  GT orthologous gene has so far not been identified [49], which 241 

raises the possibility that  detected at the surface of Plasmodium sporozoites is 242 

produced, at least in part, by the Anopheles mosquito vector. That arthropods express -243 

gal is supported by the finding that the bite of a star tick, Amblyomma americanum, can 244 

trigger the production of -gal-specific IgE Ab, eventually associated with the 245 

development of red meat allergy [75]. However, there is no clear putative arthropod 246 

1,3GT orthologous gene and as such the origin of the -gal glycans detected in 247 

Plasmodium sporozoites remains to be established. 248 

 If the expression of -gal at the surface of Plasmodium sporozoites is controlled, to 249 

at least some extent, by the Anopheles mosquito, how would these glycans transfer from 250 

the vector into the parasite? The observation that the -gal is conjugated to GPI-251 

anchored proteins expressed at the surface of Plasmodium sporozoites [7], Trypanosoma 252 

[53] and possibly Leishmania spp. [60, 61, 76], opens the possibility that arthropod GPI-253 

anchors may transfer from arthropod vectors to these parasites, via a process known as 254 

inter-membrane transfer of GPI-anchored proteins [77, 78]. In support of this notion, 255 

Trypanosoma GPI-anchored variable surface glycoproteins can transfer to the membrane 256 

of mammalian red blood cells [79] and as such it is possible that arthropod GPI-anchored 257 

proteins carrying -gal might also transfer into the membranes of protozoan parasites. 258 

This remains however, to be tested experimentally. 259 

 260 
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Using  as target antigens in vaccines against vector-borne diseases. 261 

Vector-borne diseases account for 17% of all infectious diseases worldwide, 262 

corresponding to an estimated one billion infected individuals and one million associated 263 

deaths per year (http://www.who.int/mediacentre/factsheets/fs387/en/). While malaria’s 264 

death toll decreased by 20-30% over the past decade, presumably due to the 265 

implementation of global malaria control programs, there are still 219 million infected 266 

individuals yearly, of which 660.000 succumb to severe disease 267 

(http://www.who.int/mediacentre/factsheets/fs094/en/). Incidence of African human 268 

trypanosomiasis has also been steadily decreasing over the past decade, likely due to 269 

vector control strategies (http://www.who.int/mediacentre/factsheets/fs259/en/). The 270 

situation is somehow different for American trypanosomiasis with an estimated 6-7 271 

million individuals infected by T. cruzi and a fraction of those developing Chagas disease 272 

(http://www.who.int/mediacentre/factsheets/fs340/en/). There is an estimated 1.3 million 273 

individuals infected by Leishmania spp. with an associated 20 000 deaths per year 274 

(http://www.who.int/mediacentre/factsheets/fs375/en/). 275 

 Eradication of vector-borne diseases will require the development of highly 276 

efficient vaccines conferring sterile protection against disease transmission. The finding 277 

that -gal in bacterial components of the gut microbiota can trigger a systemic Ab 278 

response that confers sterile protection against malaria transmission argues that 279 

vaccination against -gal might contribute to achieve this goal, at least in the context of 280 

malaria. Likely, the protective effect conferred by low affinity -gal-specific IgM NAb 281 

produced against enteric bacteria should be enhanced via vaccination approaches 282 

eliciting high-affinity -gal-specific IgG Ab responses [7]. Of note, newborns have only 283 

residual levels of circulating anti--gal IgM Ab and would benefit particularly from such 284 

an approach. Different strategies may be considered, namely glycan-based vaccines [80] 285 

or mucosal immunization by bacteria expressing glycans [81]. 286 

 When conjugated to protein antigen, immunogenic glycans such as -gal can 287 

trigger high-affinity T-cell dependent IgG Ab responses directed against peptide and 288 

glycan epitopes [82]. Briefly, glycoconjugates containing -gal are rapidly captured by 289 

circulating anti--gal Ab and shuttled, via an Fc-receptor-mediated mechanism, to 290 
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dendritic cells that present peptide epitopes to naïve CD4+ T helper (TH) cells and cross-291 

present to naïve CD8+ T cytotoxic (TC) cells [25, 83]. These glycoconjugates are also 292 

captured by peripheral -gal-specific B cells, which account for 1% of the peripheral B 293 

cell repertoire and can present peptide epitopes to TH cells [83]. Using such 294 

glycoconjugates in a vaccination strategy is particularly well suited when targeting 295 

Plasmodium, Trypanosomes or Leishmania, which have an initial extracellular stage of 296 

infection in the skin that can be targeted by high affinity glycan-specific IgG Ab. The 297 

intracellular stages of infection can be targeted by antigen-specific CD4+ TH and CD8+ 298 

TC cells, recognizing peptides derived from the glycoconjugate based vaccine.  299 

 Oral vaccination by live bacteria expressing specific antigens a widely used 300 

approach to obtain protective immunity against pathogens. In one approach, antigens are 301 

expressed in attenuated non-pathogenic bacterial strains such as Salmonella typhi [84] or 302 

Vibrio cholerae [85]. Alternatively, antigens can be expressed in live food grade bacteria 303 

such as Lactococcus [86], probiotic bacteria such as Bifidobacteria or gut commensal 304 

Bacteroidetes, Alphaproteobacteria, Actinobacteria, Firmicutes or Fusobacteria. The 305 

finding that when expressed in Lactococcus lactis, antigenic peptides derived from 306 

Plasmodium proteins can elicit a protective Ab response against Plasmodium infection 307 

[86, 87], suggests that this approach might be used in bacteria expressing -gal to confer 308 

immune protection against malaria and possibly other vector-borne diseases. 309 

 310 

Concluding remarks 311 

The finding that when expressed by bacterial components of the gut microbiota glycans 312 

such as α-gal can elicit a systemic Ab response that confers sterile protection against 313 

malaria transmission could have several implications, not only to our current 314 

understanding of host microbial interaction but possibly to the eradication of malaria and 315 

likely other vector-borne diseases. The realization that mutualistic host-microbiota 316 

interactions can exert such protective effects suggests that these might be manipulated to 317 

reach therapeutic benefit (see Outstanding Questions box). This may be achieved either 318 

by diet manipulation in combination with gut colonization by natural or genetically 319 

engineered probiotic bacterial strains expressing -gal. In order to translate these 320 

approaches into clinical practice, it would be important to compare the relative efficiency 321 
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of ant--gal Ab, as compared to other Ab responses targeting Plasmodium sporozoites 322 

such as for example those directed against the CSP antigen. Glycoconjugate based 323 

vaccines can be generated to combine the immunogenic effect of CSP and achieve robust 324 

and long lasting sterile protection against malaria transmission. The uniqueness of the -325 

gal immunization approach is that it can be used, in combination or not with other 326 

antigens, to prevent the transmission of malaria as well other major vector-borne 327 

diseases. 328 
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 342 

Boxes 343 

Box 1. Family 6 glycosyltransferases 344 

1,3GT are encoded by the ABO, GGTA1 and iGbS3 genes and catalyze the 345 

formation of 1-3 glycosidic bonds between GalNAc or Gal and a Gal acceptor (EC 346 

2.4.1.87). The human ABO 1,3GT includes 1,3GTA and 1,3GTB, which generate 347 

the A and B blood group glycan epitopes, i.e. GalNAc-3Gal(Fuc-2)-3GlcNAc 348 

and Gal-3Gal(Fuc-2)-3GlcNAc, respectively. The Fuc-2-3GlcNAc O blood 349 

glycan epitope is generated in the absence of 1,3GTA and 1,3GTB activity due to 350 

several loss-of-function mutations in these genes, maintained as balanced polymorphisms 351 

in human populations  [88]. Functional deletions in genes encoding ABO 1,3GT are not 352 

associated with overt pathologic outcomes and therefore the physiologic role of the ABO 353 

blood group system remains elusive. The glycoprotein -galactosyltransferase 1 354 

(GGTA1) 1,3GT catalyzes the generation of Gal-3Galβ1-4GlcNAc-R glycan, bound 355 

essentially to proteins. The GGTA1 gene is functional in nearly all mammals except in 356 

Old World monkeys, including humans, which carry a mutated GGTA1 pseudogene and 357 

do not express the Gal-3Galβ1-4GlcNAc-R glycan [33]. The iGb3S 1,3GT catalyzes 358 

the generation of Gal-3Gal-4Glc-ceramide glycan in a subset of isogloboside 359 

glycolipids [89]. In a similar manner to the GGTA1 gene, humans carry a mutated iGb3S 360 

pseudogene [90] and do not express Gal-3Gal-4Glc-ceramide. 361 

 362 

Box 2. Evolutionarily based mechanisms of self vs. non-self glycan discrimination.  363 

Several examples suggest that selection and fixation of loss-of-function in genes 364 

encoding glycosyltransferases that generate self-glycans acted as a major driving force in 365 

shaping the human anti-glycan Ab repertoire. These include loss-of-function mutations 366 

in ancestral anthropoid primates that deleted the GGTA1 gene, which encodes a GT 367 

generating the Gal-3Galβ1-4GlcNAc-R glycan [91]. Loss-of-function mutations were 368 

also selected and fixed in the human iGb3S gene, which encodes a GT that generates 369 
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the Gal-3Gal-4Glc-ceramide glycan [90]. Deletion of these GT eliminated the 370 

expression of -gal self-glycans and allowed for the emergence of immune reactivity 371 

against -gal glycans, illustrated by the high levels of circulating anti--gal Ab detected 372 

in healthy humans [10]. Other examples of this evolutionarily based process include loss-373 

of-function of the human cytidine monophosphate-N-acetylneuraminic acid hydroxylase-374 

like (CMAH) gene, which suppressed the expression of N-glycolylneuraminic acid 375 

(Neu5Gc)[92] and allowed for immune reactivity against this glycan [93]. Loss of 376 

function mutations in these glycosyltransferases also altered the ability of some 377 

pathogens to bind to host glycans in a manner that supports infection, as proposed for the 378 

impact of Neu5Gc elimination in Plasmodium infection [94]. It likely that other loss-of-379 

function mutations in glycosyltransferase genes shaped the human anti-glycan Ab 380 

repertoire and/or altered host pathogen interactions [9]. 381 

 382 

Glossary 383 

Antibodies (Ab): The product of Immunoglobin (Ig) genes that recognize specifically 384 

molecular structures known as epitopes, i.e. antigenic determinant. These are part of a 385 

larger molecule that can trigger an Ab response, i.e. antigen. Ab are composed of a 386 

fragment antigen-binding (Fab) region that binds the epitope and a fragment 387 

crystallizable (Fc) region, which endows the Ab with effector function through the 388 

engagement of immune-based mechanisms. Different Fc region define IgM, IgA and IgG 389 

isotypes and subclasses of IgA (IgA1 and IgA2) or IgG (IgG1, IgG2, IgG3 and IgG4). 390 

The main function of Ab is to recognize and neutralize pathogens as well as to avoid 391 

microorganism transition into a pathobiont. 392 

Glycosylation: is an evolutionary conserved biologic process defined as an “enzyme-393 

catalyzed covalent attachment of a carbohydrate to a polypeptide, lipid, polynucleotide, 394 

carbohydrate, or other organic compound” [95]. Glycosylation is catalyzed, in most 395 

cases, by glycosyltransferases that use specific sugar nucleotide donors as substrates to 396 

generate glycans, that is, “any sugar or assembly of sugars, in free form or attached to 397 

another molecule” [95]. 398 
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Interspecies interactions: include mutualistic interactions (i.e. commensalism) when 399 

organisms from both species benefit from their interaction, commensal interactions (i.e. 400 

commensalism) when one of the species benefits from the interaction without detriment 401 

to the other and pathologic interaction (i.e. parasitism) where one species, i.e. the 402 

pathogen, benefits from the interaction in detriment of the other, i.e. the host. In some 403 

cases mutualistic or commensal interactions change such that they becomes pathologic. 404 

In that case the organism species that benefits from this transition, in detriment of its 405 

host, is referred to as a pathobiont. 406 

Microbiota: Multicellular organisms establish structured interactions with dynamic 407 

communities of microorganisms, including viruses, bacteria and fungi, collectively 408 

known as the microbiota. This interspecies relationship can range from mutualistic to 409 

commensal or pathogenic, depending on the inherent composition of the microbiota or 410 

the immune status of the host. Deregulation of host microbiota interactions impacts on 411 

host homeostasis and can have pathogenic effects. 412 

Germ-free: Absence of germs, i.e. microorganisms. Animals or other multicellular 413 

organisms can be maintained under experimental germ-free conditions to establish a 414 

causal relationship between the microbiota and a given aspect of host physiology. When 415 

colonized by a specific microorganism or group thereof, germ-free animals or other 416 

multicellular organisms are referred to as gnotobiotic. This experimental approach is 417 

often used to determine causal relationship between a given microorganism or group of 418 

microorganisms and a given aspect of host physiology. 419 

Red Queen Hypothesis: Living organisms are under a continuous selective pressure of 420 

exerted by parasitic relationships so that both host and parasites co-evolve to gain 421 

advantage over each other. 422 

 423 

424 
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 425 

Figure Legends: 426 

Figure 1: Evolutionarily based mechanisms of self vs. non-self glycan 427 

discrimination. Humans carry loss-of-function mutations that were inherited from 428 

ancestral anthropoid primates and hominids, impairing the expression of 429 

galactosyltransferase (GT)-encoding genes, such as GGTA1 and iGb3S [90]. These 430 

eliminated the expression of Gal-3Gal (-gal) glycans as self antigens and allowed for 431 

the emergence of anti--gal antibody (Ab) responses [10], which confer protection 432 

against Plasmodium infection [7]. Presumably, this protective effect favored natural 433 

selection and fixation of such mutations in modern humans. . Similarly, loss-of-function 434 

of the human CMAH gene (encoding a cytidine monophosphate-N-acetylneuraminic acid 435 

hydroxylase-like protein) allowed for immune reactivity against N-glycolylneuraminic 436 

acid (Neu5Gc) [93] and likely altered the ability of ancestral forms of Plasmodium to 437 

infect ancestral hominids. This is thought to have driven Plasmodium spp. to co-evolve, 438 

which presumably give rise to the modern human pathogen Plasmodium falciparum [94]. 439 

It is likely that other loss-of-function mutations in glycosyltransferase genes shaped the 440 

human anti-glycan Ab repertoire and/or altered host pathogen interactions [9]. 441 

 442 

Figure 2: Microbiota driven protection against malaria transmission. Gut 443 

colonization by the Enterobacteriaceae E. coli O86B7, which recapitulates the etiology 444 

of anti-Gal-3Gal (anti-α-gal) IgM antibodies (Ab) production in mice [65] and 445 

humans [17], confers protection against malaria transmission in mice [7]. This effect is 446 

mediated via the production of circulating anti-α-gal IgM Ab that target α-gal glycan 447 

expressed at the surface of Plasmodium sporozoites (Spz) [7]. Anti-α-gal IgM Ab trigger 448 

the activation of the classical pathway of complement (C1q, C5b9), which kills 449 

Plasmodium sporozoites in the skin and hence confers sterile protection against malaria 450 

[7]. BCR, B cell receptor; PRR, pattern recognition receptor; 3, Gal-3Gal. 451 

 452 

453 
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OUTSTANDING QUESTIONS BOX  

 

 What are the immunogenic bacteria in the human gut microbiota that drive the 

production of α-gal-specific antibodies? 

 What are the cellular and molecular mechanisms via which immunogenic 

bacteria in the gut microbiota trigger the production of α-gal-specific 

antibodies? 

 What is the molecular mechanism driving the expression of α-gal glycan in 

Plasmodium spp. 

 Do α-gal-specific antibodies confer protection against vector borne pathogens, 

other than Plasmodium spp.? 

 Should vaccination against α-gal glycans be considered in the development of 

malaria vaccines? 

 Should vaccination against α-gal glycans be considered in the development of 

vaccines against vector borne pathogens, other than Plasmodium spp.? 
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