289 research outputs found

    Comparative Assessment of the Binding and Neutralisation Activity of Bispecific Antibodies Against SARS-CoV-2 Variants.

    Get PDF
    Neutralising antibodies against SARS-CoV-2 are a vital component in the fight against COVID-19 pandemic, having the potential of both therapeutic and prophylactic applications. Bispecific antibodies (BsAbs) against SARS-CoV-2 are particularly promising, given their ability to bind simultaneously to two distinct sites of the receptor-binding domain (RBD) of the viral spike protein. Such antibodies are complex molecules associated with multi-faceted mechanisms of action that require appropriate bioassays to ensure product quality and manufacturing consistency. We developed procedures for biolayer interferometry (BLI) and a cell-based virus neutralisation assay, the focus reduction neutralisation test (FRNT). Using both assays, we tested a panel of five BsAbs against different spike variants (Ancestral, Delta and Omicron) to evaluate the use of these analytical methods in assessing binding and neutralisation activities of anti-SARS-CoV-2 therapeutics. We found comparable trends between BLI-derived binding affinity and FRNT-based virus neutralisation activity. Antibodies that displayed high binding affinity against a variant were often followed by potent neutralisation at lower concentrations, whereas those with low binding affinity also demonstrated reduced neutralisation activity. The results support the utility of BLI and FRNT assays in measuring variant-specific binding and virus neutralisation activity of anti-SARS-CoV-2 antibodies

    A New Viscosity Equation For Bin Aqueous Solutions.

    Get PDF
    An equation for the viscosity of binary aqueous solutions has been derived based on the Power law equation and Erying's absolute rate theory. The concentration dependent equation for viscosities of binary aqueous systems is derived using additive contribution from water and solute component. The equation has sufficient degree of freedom to represent the' whole range of concentration. The equation has been applied to 12 nonelectrolyte aqueous systems and 10 electrolyte systems at various temperatures. An average absolute deviation percentage error' (AAD%) of 0.2856% is reported for electrolyte systems: For non-electrolyte systems an average AAD% of 0.7843% is reported. Overall, the equation is found to have yielded an AAD% of 0.5576%

    Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat

    Get PDF
    The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both ‘selfish’ and ‘altruistic’ characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed

    Nutrigenomic and nutritional analyses reveal the effects of pelleted feeds on Asian Seabass (Lates calcarifer)

    Get PDF
    As nutrition-related expenses constitute the majority of the costs for aquaculture farms, it is essential for them to use feeds that provide an ideal combination of nutrients for the species of choice. In this study, the relative effect of consuming three different pelleted feeds (B, C and D) in comparison to frozen baitfish (A; control) were compared on juvenile Asian seabass (77.3 ± 22.4g) that were selected for increased growth rate over two generations. Our objectives were: 1) to evaluate the effects of different pelleted feeds based on overall physiological changes and nutritional quality of fillets; 2) improve our understanding of the underlying mechanisms with transcriptomic analysis; 3) if possible, identify the feed type that supports the growth of these fishes without substantially reducing the nutritional quality of fillet. The growth performance, fatty acid composition of fillet, hepatic histology and transcriptome of the fishes (Groups A-D) were analyzed. The majority of fatty acids of the fillets, except γ-linolenic acid (GLA, C18:3n6), correlated significantly with the respective diets. Asian seabass fed Feed C showed highest specific growth rate (SGR) and feed conversion efficiency (FCE) with closest histology and transcriptomic profile to control, but their fillet contained the highest n6/n3 ratio. When the liver-based transcriptomes were analyzed, a complex set of differentially expressed genes were detected between groups fed pelleted feeds and controls as well as among the pellet-fed groups themselves. Significant enrichment of genes with growth-related function tallied with the morphological data measured. When compared with control (Group A), ‘Biosynthesis of unsaturated fatty acids’ and ‘Steroid biosynthesis’ pathways were significantly enriched in pellet-fed groups. Reduced goblet cell numbers were observed in the gut of pellet-fed fish compared to controls and fads6 was found to be a suitable candidate gene to separate wild-caught Asian seabass, from pellet-fed ones. These results provide insights for researchers on the various effects of feeds on the biochemistry and global gene expression of the fish and potentially for seabass farms to make more informed feed choices

    Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley

    Get PDF
    Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target‐capture method was used to detect genome‐wide polymorphisms in a panel of 174 flowering time‐related genes, chosen based on prior knowledge from barley, rice, and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas

    First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

    Full text link
    We overview nonequilibrium Green function combined with density functional theory (NEGF-DFT) modeling of independent electron and phonon transport in nanojunctions with applications focused on a new class of thermoelectric devices where a single molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from ZGNRs, so that their overlap within the molecular region generates a peak in the electronic transmission. Additionally, the spatial symmetry properties of the transverse propagating states in the ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below liquid nitrogen temperature. The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short conjugated organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special issue of the Journal of Computational Electronics on "Simulation of Thermal, Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I. Knezevic and Z. Aksamij

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore