190 research outputs found

    On the trace identity in a model with broken symmetry

    Get PDF
    Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show the validity of a trace identity -- to all orders of perturbation theory -- playing the role of a Callan-Symanzik equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space background, represented by the non-propagating external vielbein field, we can express the conservation of the energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik equation'' then is the anomalous Ward identity for the trace of the energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.

    Gauge dependence of effective action and renormalization group functions in effective gauge theories

    Get PDF
    The Caswell-Wilczek analysis on the gauge dependence of the effective action and the renormalization group functions in Yang-Mills theories is generalized to generic, possibly power counting non renormalizable gauge theories. It is shown that the physical coupling constants of the classical theory can be redefined by gauge parameter dependent contributions of higher orders in \hbar in such a way that the effective action depends trivially on the gauge parameters, while suitably defined physical beta functions do not depend on those parameters.Comment: 13 pages Latex file, additional comments in section

    Precision measurement of the deuteron spin structure function g1dg^{d}_{1}

    Get PDF
    We report on a high-statistics measurement of the deuteron spin structure function g[sup d][sub 1] at a beam energy of 29 GeV in the kinematic range 0.029 < x < 0.8 and 1 < Q2 < 10 (GeV/c)2. The integral Gamma [sup d][sub 1] = (integral)[sup 1][sub 0]g[sup d][sub 1]dx evaluated at fixed Q2 = 3 (GeV/c)2 gives 0.042 ± 0.003(stat) ± 0.004(syst). Combining this result with our earlier measurement of g[sup p][sub 1], we find Gamma [sup p][sub 1]- Gamma [sup n][sub 1] = 0.163 ± 0.010(stat) ± 0.016(syst), which agrees with the prediction of the Bjorken sum rule with O( alpha [sup 3][sub s]) corrections, Gamma [sup p][sub 1]- Gamma [sup n][sub 1] = 0.171 ± 0.008. We find the quark contribution to the proton helicity to be Delta q = 0.30 ± 0.06

    Measurements of R=sigma_L/sigma_T for 0.03<x<0.1 and Fit to World Data

    Get PDF
    Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.Comment: 8 pages, 4 figures, late

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
    corecore