1,175 research outputs found

    Experimental Parameters for a Cerium 144 Based Intense Electron Antineutrino Generator Experiment at Very Short Baselines

    Get PDF
    The standard three-neutrino oscillation paradigm, associated with small squared mass splittings 0.1 eV2\ll 0.1\ \mathrm{eV^2}, has been successfully built up over the last 15 years using solar, atmospheric, long baseline accelerator and reactor neutrino experiments. However, this well-established picture might suffer from anomalous results reported at very short baselines in some of these experiments. If not experimental artifacts, such results could possibly be interpreted as the existence of at least an additional fourth sterile neutrino species, mixing with the known active flavors with an associated mass splitting 0.1 eV2\ll 0.1\ \mathrm{eV^2}, and being insensitive to standard weak interactions. Precision measurements at very short baselines (5 to 15 m) with intense MeV electronic antineutrino emitters can be used to probe these anomalies. In this article, the expected antineutrino signal and backgrounds of a generic experiment which consists of deploying an intense beta minus radioactive source inside or in the vicinity of a large liquid scintillator detector are studied. The technical challenges to perform such an experiment are identified, along with quantifying the possible source and detector induced systematics, and their impact on the sensitivity to the observation of neutrino oscillations at short baselines.Comment: 21 pages, 27 figures, generated with pdflatex, accepted for publication in Phys. Rev.

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant

    Emulating opportunistic networks with KauNet Triggers

    Get PDF
    In opportunistic networks the availability of an end-to-end path is no longer required. Instead opportunistic networks may take advantage of temporary connectivity opportunities. Opportunistic networks present a demanding environment for network emulation as the traditional emulation setup, where application/transport endpoints only send and receive packets from the network following a black box approach, is no longer applicable. Opportunistic networking protocols and applications additionally need to react to the dynamics of the underlying network beyond what is conveyed through the exchange of packets. In order to support IP-level emulation evaluations of applications and protocols that react to lower layer events, we have proposed the use of emulation triggers. Emulation triggers can emulate arbitrary cross-layer feedback and can be synchronized with other emulation effects. After introducing the design and implementation of triggers in the KauNet emulator, we describe the integration of triggers with the DTN2 reference implementation and illustrate how the functionality can be used to emulate a classical DTN data-mule scenario

    Robust implications on Dark Matter from the first FERMI sky gamma map

    Full text link
    We derive robust model-independent bounds on DM annihilations and decays from the first year of FERMI gamma-ray observations of the whole sky. These bounds only have a mild dependence on the DM density profile and allow the following DM interpretations of the PAMELA and FERMI electron/positron excesses: primary channels mu+ mu-, mu+ mu-mu+mu- or e+ e- e+ e-. An isothermal-like density profile is needed for annihilating DM. In all such cases, FERMI gamma spectra must contain a significant DM component, that may be probed in the future.Comment: 16 pages, 8 figures. Final versio

    Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment

    Get PDF
    Bone marrow transplantation offers great promise for treating a number of disease states. However, the widespread application of this approach is dependent upon the development of less toxic methods to establish chimerism and avoid graft-versus-host disease (GVHD). CD8+/TCR− facilitating cells (FCs) have been shown to enhance engraftment of hematopoietic stem cells (HSCs) in allogeneic recipients without causing GVHD. In the present studies, we have identified the main subpopulation of FCs as plasmacytoid precursor dendritic cells (p-preDCs). FCs and p-preDCs share many phenotypic, morphological, and functional features: both produce IFN-α and TNF-α, both are activated by toll-like receptor (TLR)-9 ligand (CpG ODN) stimulation, and both expand and mature after Flt3 ligand (FL) treatment. FL-mobilized FCs, most of which express a preDC phenotype, significantly enhance engraftment of HSCs and induce donor-specific tolerance to skin allografts. However, p-preDCs alone or p-preDCs from the FC population facilitate HSC engraftment less efficiently than total FCs. Moreover, FCs depleted of preDCs completely fail to facilitate HSC engraftment. These results are the first to define a direct functional role for p-preDCs in HSC engraftment, and also suggest that p-preDCs need to be in a certain state of maturation/activation to be fully functional

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version

    White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    Full text link
    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author lis
    corecore