2,142 research outputs found

    Investigating Astromaterials Curation Applications for Dexterous Robotic Arms

    Get PDF
    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center is currently investigating tools and methods that will enable the curation of future astromaterials collections. Size and temperature constraints for astromaterials to be collected by current and future proposed missions will require the development of new robotic sample and tool handling capabilities. NASA Curation has investigated the application of robot arms in the past, and robotic 3-axis micromanipulators are currently in use for small particle curation in the Stardust and Cosmic Dust laboratories. While 3-axis micromanipulators have been extremely successful for activities involving the transfer of isolated particles in the 5-20 micron range (e.g. from microscope slide to epoxy bullet tip, beryllium SEM disk), their limited ranges of motion and lack of yaw, pitch, and roll degrees of freedom restrict their utility in other applications. For instance, curators removing particles from cosmic dust collectors by hand often employ scooping and rotating motions to successfully free trapped particles from the silicone oil coatings. Similar scooping and rotating motions are also employed when isolating a specific particle of interest from an aliquot of crushed meteorite. While cosmic dust curators have been remarkably successful with these kinds of particle manipulations using handheld tools, operator fatigue limits the number of particles that can be removed during a given extraction session. The challenges for curation of small particles will be exacerbated by mission requirements that samples be processed in N2 sample cabinets (i.e. gloveboxes). We have been investigating the use of compact robot arms to facilitate sample handling within gloveboxes. Six-axis robot arms potentially have applications beyond small particle manipulation. For instance, future sample return missions may involve biologically sensitive astromaterials that can be easily compromised by physical interaction with a curator; other potential future returned samples may require cryogenic curation. Robot arms may be combined with high resolution cameras within a sample cabinet and controlled remotely by curator. Sophisticated robot arm and hand combination systems can be programmed to mimic the movements of a curator wearing a data glove; successful implementation of such a system may ultimately allow a curator to virtually operate in a nitrogen, cryogenic, or biologically sensitive environment with dexterity comparable to that of a curator physically handling samples in a glove box

    Meca500 Robotic Arm Developments Towards Astromaterials Curation Applications

    Get PDF
    As a part of the ongoing efforts to develop new curation tools and techniques for astromaterials within the Astromaterials Acquisition and Curation office at NASAs Johnson Space Center, we are developing a variety of manually and electrically controlled micromanipulation systems. Most current techniques require manual manipulation, and in some cases the manipulation task is being done entirely freehand. The motorized systems avail-able are restricted to three degrees of freedom and use proprietary control systems. For example, the MicroSupport AxisPro manipulation system currently used in microscale particle experiments is limited in its range of motion, as it can only move the manipulators in a three axis Cartesian range over a predetermined area above microscope slides. While having an efficient user interface, the control system is proprietary and prevents custom development and optimization to extend the viable applications of the system. In order to address some of these limitations, we have been testing robotic designs with multiple degrees of freedom and of a variety of designs. We are currently investigating the Meca500 robotic arm by Mecademic as a potential manipulation system to overcome some of these obstacles

    Psychological caring climate at work, mental health, well-being, and work-related outcomes : evidence from a longitudinal study and health insurance data

    Get PDF
    Psychological climate for caring (PCC) is a psychosocial factor associated with individual work outcomes and employee well-being. Evidence on the impacts of various psychological climates at work is based mostly on self-reported health measures and cross-sectional data. We provide longitudinal evidence on the associations of PCC with subsequent diagnosed depression and anxiety, subjective well-being, and self-reported work outcomes. Employees of a US organization with a worker well-being program provided data for the analysis. Longitudinal survey data merged with data from personnel files and health insurance claims records comprising medical information on diagnosis of depression and anxiety were used to regress each outcome on PCC at baseline, adjusting for prior values of all outcomes and other covariates. PCC was found to be associated with lower odds of subsequent diagnosed depression, an increase in overall well-being, mental health, physical health, social connectedness, and financial security, as well as a decrease in distraction at work, an increase in productivity/engagement and possibly in job satisfaction. There was little evidence of associations between PCC and subsequent diagnosed anxiety, character strengths, and work-family conflict. Work policies focused on improving PCC may create a promising pathway to promoting employee health and well-being as well as improving work-related outcomes

    Associations of online religious participation during COVID-19 lockdown with subsequent health and well-being among UK adults.

    Get PDF
    Background In-person religious service attendance has been linked to favorable health and well-being outcomes. However, little research has examined whether online religious participation improves these outcomes, especially when in-person attendance is suspended. Methods Using longitudinal data of 8951 UK adults, this study prospectively examined the association between frequency of online religious participation during the stringent lockdown in the UK (23 March –13 May 2020) and 21 indicators of psychological well-being, social well-being, pro-social/altruistic behaviors, psychological distress, and health behaviors. All analyses adjusted for baseline socio-demographic characteristics, pre-pandemic in-person religious service attendance, and prior values of the outcome variables whenever data were available. Bonferroni correction was used to correct for multiple testing. Results Individuals with online religious participation of ≥1/week (v. those with no participation at all) during the lockdown had a lower prevalence of thoughts of self-harm in week 20 (odds ratio 0.24; 95% CI 0.09–0.62). Online religious participation of <1/week (v. no participation) was associated with higher life satisfaction (standardized β = 0.25; 0.11–0.39) and happiness (standardized β = 0.25; 0.08–0.42). However, there was little evidence for the associations between online religious participation and all other outcomes (e.g. depressive symptoms and anxiety). Conclusions There was evidence that online religious participation during the lockdown was associated with some subsequent health and well-being outcomes. Future studies should examine mechanisms underlying the inconsistent results for online v. in-person religious service attendance and also use data from non-pandemic situations

    Mental Toughness in South African Youth: Relationships With Forgivingness and Attitudes Towards Risk

    Get PDF
    Young people are particularly vulnerable to health risk behaviors and interpersonal violence, stimulating scholars’ attention towards identifying factors that may reduce the likelihood that these actions will occur. Associated with positive outcomes in a variety of domains, mental toughness in young people might protect them from engaging in potentially deleterious interpersonal or health-risk behaviors, while potentially promoting positive psychological behaviors. Within this framework, the present study investigated the relationships between mental toughness, attitudes towards physical and psychological risk-taking, and trait forgiveness in a sample of 123 (males = 54, females = 69) South African youth (M age = 23.97 years, SD = 4.46). Univariate and multivariate analyses indicated higher levels of mental toughness were associated with being more forgiving, (η2pηp2 = .036), perceiving physical risk-taking more positively (η2pηp2 = .062), but having more negative attitudes towards psychological risk-taking (η2pηp2 = .036). These findings give credence to mental toughness as a psychological characteristic involved in youth risk-taking perceptions and interpersonal functioning. Future research might explore the integration of mental toughness into the development of future youth risk behavior interventions

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore