2,754 research outputs found

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Substance Use Disorders in Schizophrenia—Clinical Implications of Comorbidity

    Get PDF
    Nearly half of the people suffering from schizophrenia also present with a lifetime history of substance use disorders (SUD), a rate that is much higher than the one seen among unaffected individuals. This phenomenon suggests that the factors influencing SUD risk in schizophrenia may be more numerous and/or complex than those modulating SUD risk in the general population. It is critically important to address this comorbidity because SUD in schizophrenic patients is associated with poorer clinical outcomes and contributes significantly to their morbidity and mortality

    Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera : Occurrence and Importance

    Get PDF
    Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume–rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure

    Organellar inheritance in the green lineage: insights from Ostreococcus tauri

    Get PDF
    Along the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage. Here, we investigate organellar evolution in the early branching green alga Ostreococcus tauri using population genomics data from the complete mitochondrial and chloroplast genomes. The haplotype structure is consistent with clonal evolution in mitochondria, while we find evidence for recombination in the chloroplast genome. The number of recombination events in the genealogy of the chloroplast suggests that recombination, and thus biparental inheritance, is not rare. Consistent with the evidence of recombination, we find that the ratio of the number of nonsynonymous to the synonymous polymorphisms per site is lower in chloroplast than in the mitochondria genome. We also find evidence for the segregation of two selfish genetic elements in the chloroplast. These results shed light on the role of recombination and the evolutionary history of organellar inheritance in the green lineage

    Species abundance patterns in an ecosystem simulation studied through Fisher's logseries

    Get PDF
    We have developed an individual-based evolving predator-prey ecosystem simulation that integrates, for the first time, a complex individual behaviour model, an evolutionary mechanism and a speciation process, at an acceptable computational cost. In this article, we analyse the species abundance patterns observed in the communities generated by our simulation, based on Fisher's logseries. We propose a rigorous methodology for testing abundance data against the logseries. We show that our simulation produces coherent results, in terms of relative species abundance, when compared to classical ecological patterns. Some preliminary results are also provided about how our simulation is supporting ecological field results

    Rooting and dating maples (Acer) with an uncorrelated-rates molecular clock

    Get PDF
    Simulations suggest that molecular clock analyses can correctly identify the root of a tree even when the clock assumption is severely violated. Clock-based rooting of phylogenies may be particularly useful when outgroup rooting is problematic. Here, we explore relaxed-clock rooting in the Acer/Dipteronia clade of Sapindaceae, which comprises genera of highly uneven species richness and problematic mutual monophyly. Using an approach that does not presuppose rate autocorrelation between ancestral and descendant branches and hence does not require a rooted a priori topology, we analyzed data fromup to seven chloroplast loci for some 50 ingroup species. For comparison,weused midpoint and outgroup rooting and dating methods that rely on rooted input trees, namely penalized likelihood, a Bayesian autocorrelated-rates model, and a strict clock. The chloroplast sequences used here reject a single global substitution rate, and the assumption of autocorrelated rates was also rejected. The root was placed between Acer and Dipteronia by all three rooting methods, albeit with low statistical support. Analyses of Acer diversification with a lineage-through-time plot and different survival models, although sensitive to missing data, suggest a gradual decrease in the average diversification rate. The nine North American species of Acer diverged from their nearest relatives at widely different times: eastern American Acer diverged in the Oligocene and Late Miocene; western American species in the Late Eocene and Mid Miocene; and the Acer core clade, including A. saccharum, dates to the Miocene. Recent diversification in North America is strikingly rare compared to diversification in eastern Asia

    Molecular evolution of the insect-specific flaviviruses

    Get PDF
    There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus Flavivirus. We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family Flaviviridae. We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses

    The Basic Helix-Loop-Helix Transcription Factor Family in the Pea Aphid, Acyrthosiphon pisum

    Get PDF
    The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, and human. This study identified 54 bHLH family members in the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), genome. Phylogenetic analyses revealed that they belong to 37 bHLH families with 21, 13, 9, 1, 9, and 1 members in group A, B, C, D, E, and F, respectively. Through in-group phylogenetic analyses, all of the identified A. pisum bHLH members were assigned into their correspondent bHLH families with confidence, among which 51 were defined according to phylogenetic analyses with orthologs from Drosophila melanogaster Meigen (Diptera: Drosophilidae), and 3 of them were defined according to phylogenetic analyses with orthologs from Bombyx mori L. (Lepidoptera: Bombycidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Analyses on genomic coding regions revealed that the number and average length of introns in A. pisum bHLH motifs are higher than those in other insects. The present study provides useful background information for future studies on structure and function of bHLH proteins in the regulation of A. pisum development

    Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae

    Get PDF
    Using morphological characters, cultural characters, large subunit and internal transcribed spacer rDNA (ITS) sequences, and provisions of the International Code of Botanical Nomenclature, this paper attempts to resolve the taxonomic and nomenclatural confusion surrounding three species of cladosporium-like hyphomycetes. The type specimen of Hormodendrum resinae, the basis for the use of the epithet resinae for the creosote fungus {either as Hormoconis resinae or Cladosporium resinae) represents the mononematous synanamorph of the synnematous, resinicolous fungus Sorocybe resinae. The phylogenetic relationships of the creosote fungus, which is the anamorph of Amorphotheca resinae, are with the family Myxotrichaceae, whereas S. resinae is related to Capronia (Chaetothyriales, Herpotrichiellaceae). Our data support the segregation of Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in the recently described anamorph genus Seifertia, distinct from Sorocybe; this species is related to the Dothideomycetes but its exact phylogenetic placement is uncertain. To formally stabilize the name of the anamorph of the creosote fungus, conservation of Hormodendrum resinae with a new holotype should be considered. The paraphyly of the family Myxotrichaceae with the Amorphothecaceae suggested by ITS sequences should be confirmed with additional genes
    corecore