295 research outputs found

    Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods

    Get PDF
    The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species

    Bayesian molecular phylogenetics: estimation of divergence dates and hypothesis testing

    Get PDF
    With the advent of automated sequencing, sequence data are now available to help us understand the functioning of our genome, as well as its history. To date,powerful methods such as maximum likelihood have been used to estimate its mode and tempo of evolution and its branching pattern. However, these methods appear to have some limitations. The purpose of this thesis is to examine these issues in light of Bayesian modelling, taking advantage of some recent advances in Bayesian computation. Firstly, Bayesian methods to estimate divergence dates when rates of evolution vary from lineage to lineages are extended and compared. The power of the technique is demonstrated by analysing twenty-two genes sampled across the metazoans to test the Cambrian explosion hypothesis. While the molecular clock gives divergence dates at least twice as old as those indicated by the fossil records, it is shown (i) that modelling rate change gives results consistent with the fossils, (ii) that this improves dramatically the fit to the data and (iii) that these results are not dependent on the choice of a specific model of rate change.Results from this analysis support a molecular explosion of the metazoans about 600 million years (MY) ago, i.e. only some 50 MY before the morphological Cambrian explosion. Secondly, two new Bayesian tests of phylogenetic trees are developed. The first aims at selecting the correct tree, while the second constructs confidence sets of trees. Two other tests are also developed, in the frequentist framework. Based on p-values adjusted for multiple comparisons,they are built to match their Bayesian counterparts. These four new tests are compared with previous tests. Their sensitivity to model misspecification and the problem of regions is discussed. Finally, some extensions to the models examined are made to estimate divergence dates from data of multiple genes, and to detect positive selection

    Dating Phylogenies with Hybrid Local Molecular Clocks

    Get PDF
    BACKGROUND: Because rates of evolution and species divergence times cannot be estimated directly from molecular data, all current dating methods require that specific assumptions be made before inferring any divergence time. These assumptions typically bear either on rates of molecular evolution (molecular clock hypothesis, local clocks models) or on both rates and times (penalized likelihood, Bayesian methods). However, most of these assumptions can affect estimated dates, oftentimes because they underestimate large amounts of rate change. PRINCIPAL FINDINGS: A significant modification to a recently proposed ad hoc rate-smoothing algorithm is described, in which local molecular clocks are automatically placed on a phylogeny. This modification makes use of hybrid approaches that borrow from recent theoretical developments in microarray data analysis. An ad hoc integration of phylogenetic uncertainty under these local clock models is also described. The performance and accuracy of the new methods are evaluated by reanalyzing three published data sets. CONCLUSIONS: It is shown that the new maximum likelihood hybrid methods can perform better than penalized likelihood and almost as well as uncorrelated Bayesian models. However, the new methods still tend to underestimate the actual amount of rate change. This work demonstrates the difficulty of estimating divergence times using local molecular clocks

    Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation

    Get PDF
    ABSTRACT: Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21−513 mg kg−1 dry wt. soil; MeHg: 1.21−6.82 ng g−1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes, were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally, assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation between Archaea and Bacteria

    Phylogeography of Ophryotrocha labronica (Polychaeta, Dorvilleidae) along the Italian coasts

    Get PDF
    Species of the genus Ophryotrocha are a well-studied group of organisms but, despite the relatively large body of biological studies, little is known about their intra-specific patterns of genetic diversity. In the present study, we analysed the patterns of genetic variation in samples of Ophryotrocha labronica (Polychaeta, Dorvilleidae) collected along the Italian coasts within three regions with different thermal regimes: the Northern Adriatic Sea (NAS), the Ligurian Sea (LS), and the South/Southeast Sicilian Sea (SS). A partial sequence of the cytochrome c oxidase subunit I (COI) gene was used as a genetic marker. An analysis of molecular variance (AMOVA) showed significant genetic differentiation between the NAS and the other regions. Conversely, little or no genetic structuring was found between the LS and the SS or amongst locations within a given region. A Bayesian phylogenetic tree and a median-joining network provided evidence for the occurrence of two highly divergent genetic lineages characterized by a high average sequence divergence (17.2%, Kimura twoparameter distance). The spatial patterns of genetic variation found in O. labronica may reflect the signature of past expansion events of the two genetic lineages. Although the high sequence divergence suggested that cryptic speciation within O. labronica may have occurred, other traits such as the absence of reproductive isolation, pattern of phenotypic variation and habitat specificity prompted us to regard the two groups as distinct COI lineages of O. labronica

    Uncorrected Nucleotide Bias in mtDNA Can Mimic the Effects of Positive Darwinian Selection

    Get PDF
    The relative rates of nucleotide substitution at synonymous and nonsynonymous sites within protein-coding regions have been widely used to infer the action of natural selection from comparative sequence data. It is known, however, that mutational and repair biases can affect rates of evolution at both synonymous and nonsynonymous sites. More importantly, it is also known that synonymous sites are particularly prone to the effects of nucleotide bias. This means that nucleotide biases may affect the calculated ratio of substitution rates at synonymous and nonsynonymous sites. Using a large data set of animal mitochondrial sequences, we demonstrate that this is, in fact, the case. Highly biased nucleotide sequences are characterized by significantly elevated dN/dS ratios, but only when the nucleotide frequencies are not taken into account. When the analysis is repeated taking the nucleotide frequencies at each codon position into account, such elevated ratios disappear. These results suggest that the recently reported differences in dN/dS ratios between vertebrate and invertebrate mitochondrial sequences could be explained by variations in mitochondrial nucleotide frequencies rather than the effects of positive Darwinian selection

    Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Get PDF
    Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA

    The Metabolic Consequences of Hepatic AMP-Kinase Phosphorylation in Rainbow Trout

    Get PDF
    AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is proposed to function as a “fuel gauge” to monitor cellular energy status in response to nutritional environmental variations. However, in fish, few studies have addressed the metabolic consequences related to the activation of this kinase. This study demonstrates that the rainbow trout (Oncorhynchus mykiss) possesses paralogs of the three known AMPK subunits that co-diversified, that the AMPK protein is present in the liver and in isolated hepatocytes, and it does change in response to physiological (fasting-re-feeding cycle) and pharmacological (AICAR and metformin administration and incubations) manipulations. Moreover, the phosphorylation of AMPK results in the phosphorylation of acetyl-CoA carboxylase, a main downstream target of AMPK in mammals. Other findings include changes in hepatic glycogen levels and several molecular actors involved in hepatic glucose and lipid metabolism, including mRNA transcript levels for glucokinase, glucose-6-phosphatase and fatty acid synthase both in vivo and in vitro. The fact that most results presented in this study are consistent with the recognized role of AMPK as a master regulator of energy homeostasis in living organisms supports the idea that these functions are conserved in this piscine model

    Genetic Variation of the Nile Soft-Shelled Turtle (Trionyx triunguis)

    Get PDF
    We studied the genetic structure of Trionyx triunguis populations from the Mediterranean and African continent based on mtDNA D-loop (776 bp) and nine microsatellite loci. A total of 102 polymorphic sites and 13 mtDNA haplotypes were described. Nucleotide diversity and haplotypes diversity were 0.047 and 0.974 respectively. Both mtDNA and nDNA supported the existence of two main management units as the Mediterranean and Africa. Based on the mtDNA results, the Mediterranean can be divided into two subunits; western Turkey and the eastern Mediterranean

    Bayesian inference of evolutionary histories under time-dependent substitution rates

    Get PDF
    Many factors complicate the estimation of time scales for phylogenetic histories, requiring increasingly complex evolutionary models and inference procedures. The widespread application of molecular clock dating has led to the insight that evolutionary rate estimates may vary with the time frame of measurement. This is particularly well established for rapidly evolving viruses that can accumulate sequence divergence over years or even months. However, this rapid evolution stands at odds with a relatively high degree of conservation of viruses or endogenous virus elements over much longer time scales. Building on recent insights into time-dependent evolutionary rates, we develop a formal and flexible Bayesian statistical inference approach that accommodates rate variation through time. We evaluate the novel molecular clock model on a foamy virus cospeciation history and a lentivirus evolutionary history and compare the performance to other molecular clock models. For both virus examples, we estimate a similarly strong time-dependent effect that implies rates varying over four orders of magnitude. The application of an analogous codon substitution model does not implicate long-term purifying selection as the cause of this effect. However, selection does appear to affect divergence time estimates for the less deep evolutionary history of the Ebolavirus genus. Finally, we explore the application of our approach on woolly mammoth ancient DNA data, which shows a much weaker, but still important, time-dependent rate effect that has a noticeable impact on node age estimates. Future developments aimed at incorporating more complex evolutionary processes will further add to the broad applicability of our approach.status: publishe
    corecore