1,749 research outputs found

    Study of energy deposition patterns in hadron calorimeter for prompt and displaced jets using convolutional neural network

    Full text link
    Sophisticated machine learning techniques have promising potential in search for physics beyond Standard Model in Large Hadron Collider (LHC). Convolutional neural networks (CNN) can provide powerful tools for differentiating between patterns of calorimeter energy deposits by prompt particles of Standard Model and long-lived particles predicted in various models beyond the Standard Model. We demonstrate the usefulness of CNN by using a couple of physics examples from well motivated BSM scenarios predicting long-lived particles giving rise to displaced jets. Our work suggests that modern machine-learning techniques have potential to discriminate between energy deposition patterns of prompt and long-lived particles, and thus, they can be useful tools in such searches.Comment: 32 pages, 17 figures; version accepted for publication in JHE

    Lepton flavour violating decay of 125 GeV Higgs boson to μτ\mu\tau channel and excess in ttˉHt\bar t H

    Full text link
    A recent search for the lepton flavor violating (LFV) decays of the Higgs boson, performed by CMS collaboration, reports an interesting deviation from the standard model (SM). The search conducted in the channel HμτeH\rightarrow \mu\tau_e and HμτhadH\rightarrow \mu\tau_{\textrm{had}} shows an excess of 2.4σ2.4\sigma signal events with 19.7 fb1^{-1} data at a center-of-mass energy s=8\sqrt s=8 TeV. On the other hand, a search performed by CMS collaboration for the SM Higgs boson produced in association with a top quark pair (ttˉHt\bar t H) also showed an excess in the same-sign di-muon final state. In this work we try to find out if these two seemingly uncorrelated excesses are related or not. Our analysis reveals that a lepton flavour violating Higgs decay (HμτH\rightarrow\mu\tau) can partially explain the excess in the same sign di-muon final state in the ttˉHt\bar t H search, infact brings down the excess well within 2σ\sigma error of the SM expectation. Probing such non-standard Higgs boson decay is of interest and might contain hints of new physics at the electroweak scale.Comment: 10 pages, 2 figures and 3 table

    A docking interaction study of the effect of critical mutations in ribonuclease a on protein-ligand binding

    Get PDF
    Enzymes with ribonucleolytic activity play a pivotal role in gene expression and cellular homeostasis by altering the levels of cellular RNA. Ribonuclease A has been the most well studied of such enzymes whose histidine residues (His12 and His119) play a crucial role in the catalytic mechanism of the protein. The ligands chosen for this study, 2′CMP and 3′CMP, act as competitive substrate analog inhibitors of this enzyme. Using molecular graphics software freely available for academic use, AutoDock and PyMol, we demonstrate that substitution of either histidine residue by alanine causes marked changes in the distances between these critical residues of the enzyme. The ligands in the docked conformation (particularly on mutation of His119 to Ala) compensate for the altered free energy and hydrogen bonding abilities in these new protein‐ligand complexes

    A comparative study of interaction of tetracycline with several proteins using time resolved anisotropy, phosphorescence, docking and FRET

    Get PDF
    A comparative study of the interaction of an antibiotic Tetracycline hydrochloride (TC) with two albumins, Human serum albumin (HSA) and Bovine serum albumin (BSA) along with Escherichia Coli Alkaline Phosphatase (AP) has been presented exploiting the enhanced emission and anisotropy of the bound drug. The association constant at 298 K is found to be two orders of magnitude lower in BSA/HSA compared to that in AP with number of binding site being one in each case. Fluorescence resonance energy transfer (FRET) and molecular docking studies have been employed for the systems containing HSA and BSA to find out the particular tryptophan (Trp) residue and the other residues in the proteins involved in the binding process. Rotational correlation time (θc) of the bound TC obtained from time resolved anisotropy of TC in all the protein-TC complexes has been compared to understand the binding mechanism. Low temperature (77 K) phosphorescence (LTP) spectra of Trp residues in the free proteins (HSA/BSA) and in the complexes of HSA/BSA have been used to specify the role of Trp residues in FRET and in the binding process. The results have been compared with those obtained for the complex of AP with TC. The photophysical behaviour (viz., emission maximum, quantum yield, lifetime and θc) of TC in various protic and aprotic polar solvents has been determined to address the nature of the microenvironment of TC in the protein-drug complexes

    New physics searches with heavy-ion collisions at the CERN Large Hadron Collider

    Get PDF
    This document summarises proposed searches for new physics accessible in the heavy-ion mode at the CERN Large Hadron Collider (LHC), both through hadronic and ultraperipheral gamma gamma interactions, and that have a competitive or, even, unique discovery potential compared to standard proton-proton collision studies. Illustrative examples include searches for new particles-such as axion-like pseudoscalars, radions, magnetic monopoles, new long-lived particles, dark photons, and sexaquarks as dark matter candidates-as well as new interactions, such as nonlinear or non-commutative QED extensions. We argue that such interesting possibilities constitute a well-justified scientific motivation, complementing standard quark-gluon-plasma physics studies, to continue running with ions at the LHC after the Run-4, i.e. beyond 2030, including light and intermediate-mass ion species, accumulating nucleon-nucleon integrated luminosities in the accessible fb(-1) range per month.Peer reviewe

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore