59 research outputs found

    ACPA-negative RA consists of two genetically distinct subsets based on RF positivity in Japanese.

    Get PDF
    HLA-DRB1, especially the shared epitope (SE), is strongly associated with rheumatoid arthritis (RA). However, recent studies have shown that SE is at most weakly associated with RA without anti-citrullinated peptide/protein antibody (ACPA). We have recently reported that ACPA-negative RA is associated with specific HLA-DRB1 alleles and diplotypes. Here, we attempted to detect genetically different subsets of ACPA-negative RA by classifying ACPA-negative RA patients into two groups based on their positivity for rheumatoid factor (RF). HLA-DRB1 genotyping data for totally 954 ACPA-negative RA patients and 2,008 healthy individuals in two independent sets were used. HLA-DRB1 allele and diplotype frequencies were compared among the ACPA-negative RF-positive RA patients, ACPA-negative RF-negative RA patients, and controls in each set. Combined results were also analyzed. A similar analysis was performed in 685 ACPA-positive RA patients classified according to their RF positivity. As a result, HLA-DRB1*04:05 and *09:01 showed strong associations with ACPA-negative RF-positive RA in the combined analysis (p = 8.8×10(-6) and 0.0011, OR: 1.57 (1.28-1.91) and 1.37 (1.13-1.65), respectively). We also found that HLA-DR14 and the HLA-DR8 homozygote were associated with ACPA-negative RF-negative RA (p = 0.00022 and 0.00013, OR: 1.52 (1.21-1.89) and 3.08 (1.68-5.64), respectively). These association tendencies were found in each set. On the contrary, we could not detect any significant differences between ACPA-positive RA subsets. As a conclusion, ACPA-negative RA includes two genetically distinct subsets according to RF positivity in Japan, which display different associations with HLA-DRB1. ACPA-negative RF-positive RA is strongly associated with HLA-DRB1*04:05 and *09:01. ACPA-negative RF-negative RA is associated with DR14 and the HLA-DR8 homozygote

    B cell-derived GABA elicits IL-10⁺ macrophages to limit anti-tumour immunity

    Get PDF
    GABAを標的とする抗腫瘍免疫機構 --代謝産物を介した免疫細胞間制御の一端を解明--. 京都大学プレスリリース. 2021-11-10.Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8⁺ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses

    Size Aftereffects Are Eliminated When Adaptor Stimuli Are Prevented from Reaching Awareness by Continuous Flash Suppression

    Get PDF
    Size aftereffects are a compelling perceptual phenomenon in which we perceive the size of a stimulus as being different than it actually is following a period of visual stimulation of an adapter stimulus with a different size. Here, we used continuous flash suppression (CFS) to determine if size aftereffects require a high-level appraisal of the adapter stimulus. The strength of size aftereffects was quantified following a 3-s exposure to perceptually visible and invisible adapters. Participants judged the size of a target that followed the adapter in comparison to a subsequent reference. Our experiments demonstrate that the adapter no longer influenced the perceived size of the subsequent target stimulus under CFS. We conclude that the perception of size aftereffects is prevented when CFS is used to suppress the conscious awarness of the adapting stimulus

    Anti-citrullinated peptide antibody-negative RA is a genetically distinct subset: a definitive study using only bone-erosive ACPA-negative rheumatoid arthritis

    Get PDF
    Objectives. ACPA is a highly specific marker for RA. It was recently reported that ACPA can be used to classify RA into two disease subsets, ACPA-positive and ACPA-negative RA. ACPA-positive RA was found to be associated with the HLA-DR shared epitope (SE), but ACPA negative was not. However, the suspicion remained that this result was caused by the ACPA-negative RA subset containing patients with non-RA diseases. We examined whether this is the case even when possible non-RA ACPA-negative RA patients were excluded by selecting only patients with bone erosion

    Activation-Induced Cytidine Deaminase Expression in CD4+ T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age

    Get PDF
    Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4+ T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4+ and B220+ cell populations. ExAID B cells remained IgM+, suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis

    The Role of Retinoic Acid in Tolerance and Immunity

    Get PDF
    Vitamin A elicits a broad array of immune responses through its metabolite, retinoic acid (RA). Recent evidence indicates that loss of RA leads to impaired immunity, whereas excess RA can potentially promote inflammatory disorders. In this review, we discuss recent advances showcasing the crucial contributions of RA to both immunological tolerance and the elicitation of adaptive immune responses. Further, we provide a comprehensive overview of the cell types and factors that control the production of RA and discuss how host perturbations may affect the ability of this metabolite to control tolerance and immunity or to instigate pathology

    Control of innate-like B cell location for compartmentalised IgM production

    Get PDF
    Natural IgM are crucial for early protection against infection and play an important homeostatic function by clearing dead cells. The production of IgM is ensured by a population of B cells with innate-like properties: their response is rapidly activated by innate signals early during the onset of infection. The main reservoir of innate-like B cells (IBCs) are the serous cavities, but their maintenance and activation depends on their relocation to a variety of lymphoid tissues. Recent advances indicate that fat-associated lymphoid clusters (FALCs) and milky spots contribute to local IgM secretion and play a central role in the localisation and regulation of IBC function

    Role of DNA methylation in head and neck cancer

    Get PDF
    Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC

    Plant immunity and symbiosis signaling mediated by LysM receptors

    No full text
    Plants possess the ability to recognize microbe-associated molecular patterns (MAMPs) and PAMPs through the PRRs, and initiate pattern-triggered immunity. MAMPs are derived from cell-envelope components, secreted materials and cytosolic proteins from bacteria, oomycetes or fungi, and some MAMPs play a similar function in the innate immunity in mammals. Chitin is a representative fungal MAMP and triggers defense signaling in a wide range of plant species. The chitin receptors CEBiP and CERK1 on the plasma membrane have LysM (lysin motif) in their ectodomains. These molecules play an important role for the defense responses in rice and Arabidopsis, strictly recognizing the size and acetylated form of chitin oligosaccharides. However, related LysM receptors also play major roles for the signaling in root nodule and arbuscular mycorrhizal symbiosis. This review summarizes current knowledge on the molecular mechanisms of the defense and symbiosis signaling mediated by LysM receptors, including the activation steps of chitin-induced defense signaling downstream of LysM receptors
    corecore