656 research outputs found

    RAGs and Regulation of Autoantibodies

    Get PDF
    Autoreactive antibodies are etiologic agents in a number of autoimmune diseases. Like all other antibodies these antibodies are produced in developing B cells by V(D)J recombination in the bone marrow. Three mechanisms regulate autoreactive B cells: deletion, receptor editing, and anergy. Here we review the prevalence of autoantibodies in the initial antibody repertoire, their regulation by receptor editing, and the role of the recombinase proteins (RAG l and RAG2) in this process

    Human Autoantibody Silencing by Immunoglobulin Light Chains

    Get PDF
    Several newly arising human antibodies are polyreactive, but in normal individuals the majority of these potentially autodestructive antibodies are removed from the repertoire by receptor editing or B cell deletion in the bone marrow. To determine what proportion of naturally arising autoantibodies can be silenced by immunoglobulin (Ig) light chain receptor editing, we replaced the light chains in 12 such antibodies with a panel of representative Igκ and Igλ chains. We found that most naturally arising autoantibodies are readily silenced by light chain exchange. Thus, receptor editing may account for most autoreactive antibody silencing in humans. Light chain complementarity determining region (CDR) isoelectric points did not correlate with silencing activity, but Igλ genes were more effective than Igκ genes as silencers. The greater efficacy of Igλ chains as silencer of autoreactivity provides a possible explanation for the expansion and altered configuration of the Igλ locus in evolution

    B-1a B Cells that Link the Innate and Adaptive Immune Responses Are Lacking in the Absence of the Spleen

    Get PDF
    Splenectomized individuals are prone to overwhelming infections with encapsulated bacteria and splenectomy of mice increases susceptibility to streptococcal infections, yet the exact mechanism by which the spleen protects against such infections is unknown. Using congenitally asplenic mice as a model, we show that the spleen is essential for the generation of B-1a cells, a B cell population that cooperates with the innate immune system to control early bacterial and viral growth. Splenectomy of wild-type mice further demonstrated that the spleen is also important for the survival of B-1a cells. Transfer experiments demonstrate that lack of these cells, as opposed to the absence of the spleen per se, is associated with an inability to mount a rapid immune response against streptococcal polysaccharides. Thus, absence of the spleen and the associated increased susceptibility to streptococcal infections is correlated with lack of B-1a B cells. These findings reveal a hitherto unknown role of the spleen in generating and maintaining the B-1a B cell pool

    A high-affinity antibody against the CSP N-terminal domain lacks Plasmodium falciparum inhibitory activity

    Get PDF
    Malaria is a global health concern and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85 Åresolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity, and the unusual utilization of an N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites, and lack of sporozoite inhibition in vitro and in mosquitoes. Overall, our data on low recognition and inhibition of sporozoites do not support the inclusion of the 5D5 epitope into the next generation of CSP-based vaccines.Summary Statement The Plasmodium falciparum sporozoite surface protein, PfCSP, is an attractive vaccine target, but the antibody response against the CSP N-terminal domain has remained understudied. Here, to guide immunogen design, Thai et al. provide insights into the binding motif and functional efficacy of the N-terminal domain-specific monoclonal antibody, 5D5

    Bruton's Tyrosine Kinase Is Essential for Human B Cell Tolerance

    Get PDF
    Most polyreactive and antinuclear antibodies are removed from the human antibody repertoire during B cell development. To elucidate how B cell receptor (BCR) signaling may regulate human B cell tolerance, we tested the specificity of recombinant antibodies from single peripheral B cells isolated from patients suffering from X-linked agammaglobulinemia (XLA). These patients carry mutations in the Bruton's tyrosine kinase (BTK) gene that encode an essential BCR signaling component. We find that in the absence of Btk, peripheral B cells show a distinct antibody repertoire consistent with extensive secondary V(D)J recombination. Nevertheless, XLA B cells are enriched in autoreactive clones. Our results demonstrate that Btk is essential in regulating thresholds for human B cell tolerance

    Persistent expression of autoantibodies in SLE patients in remission

    Get PDF
    A majority of the antibodies expressed by nascent B cells in healthy humans are self-reactive, but most of these antibodies are removed from the repertoire during B cell development. In contrast, untreated systemic lupus erythematosus (SLE) patients fail to remove many of the self-reactive and polyreactive antibodies from the naive repertoire. Here, we report that SLE patients in clinical remission continue to produce elevated numbers of self-reactive and polyreactive antibodies in the mature naive B cell compartment, but the number of B cells expressing these antibodies is lower than in patients with active disease. Our finding that abnormal levels of self-reactive mature naive B cells persist in the majority of patients in clinical remission suggests that early checkpoint abnormalities are an integral feature of SLE

    A checkpoint for autoreactivity in human IgM+ memory B cell development

    Get PDF
    Autoantibodies are removed from the repertoire at two checkpoints during B cell development in the bone marrow and the periphery. Despite these checkpoints, up to 20% of the antibodies expressed by mature naive B cells in healthy humans show low levels of self-reactivity. To determine whether self-reactive antibodies are also part of the antigen-experienced memory B cell compartment, we analyzed recombinant antibodies cloned from single circulating human IgM+ memory B cells. Cells expressing antibodies specific for individual bacterial polysaccharides were expanded in the IgM+ memory compartment. In contrast, B cells expressing self-reactive and broadly bacterially reactive antibodies were removed from the repertoire in the transition from naive to IgM+ memory B cell. Selection against self-reactive antibodies was implemented before the onset of somatic hypermutation. We conclude that a third checkpoint selects against self-reactivity during IgM+ memory B cell development in humans

    Surrogate Light Chain Expressing Human Peripheral B Cells Produce Self-reactive Antibodies

    Get PDF
    Human B cells that coexpress surrogate and conventional light chains (V-preB+L+) show an unusual heavy and light chain antibody repertoire that display evidence of receptor editing. However, it is unclear whether V-preB+L+ B cells have been silenced by receptor editing or still express autoreactive antibodies. Here we report that 68% of the antibodies expressed by V-preB+L+ B cells are autoreactive. A majority of these autoantibodies are true antinuclear antibodies (ANA), and 50% of the ANAs are also reactive with a diverse group of antigens that include dsDNA, ssDNA, immunoglobulin, insulin, and bacterial lipopolysaccharide. Such antibodies are rarely encountered among conventional B cells. We conclude that V-preB+L+ B cells are a unique subset of normal circulating human B cells that escape central tolerance mechanisms and express self-reactive antibodies including potentially harmful ANAs
    corecore