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Vitamin A elicits a broad array of immune responses through its metabolite, retinoic acid (RA). Recent
evidence indicates that loss of RA leads to impaired immunity, whereas excess RA can potentially promote
inflammatory disorders. In this review, we discuss recent advances showcasing the crucial contributions of
RA to both immunological tolerance and the elicitation of adaptive immune responses. Further, we provide
a comprehensive overview of the cell types and factors that control the production of RA and discuss how
host perturbations may affect the ability of this metabolite to control tolerance and immunity or to instigate
pathology.
Introduction
In the early 20th century, E.V. McCollum and Thomas Osborne

independently embarked on studies to identify dietary constitu-

ents that were essential for mammalian health and survival. By

using different dietary supplements, they arrived at the seminal

conclusion that a single factor present in lipids was essential

for growth and survival, which they coined ‘‘fat-soluble factor

A’’ (Wolf, 1996). Studies over the years have demonstrated the

pleiotropic influence of this nutrient, subsequently designated

vitamin A, ranging from eyesight and organogenesis to metabo-

lism and immunological fitness (Acin-Perez et al., 2010; Duester,

2008; Underwood, 2004; Ziouzenkova et al., 2007). Vitamin A’s

critical contribution to immunological health is shown by the

fact that its supplementation dramatically curbs young-child-

hood mortality in endemic regions of malnutrition (Rahmathullah

et al., 1990; Sommer, 2008; Sommer et al., 1986). The vitamin

A metabolite, retinoic acid (RA), first received attention as an

interventional therapy upon discovery that it could substitute

for more toxic chemotherapeutic regimens to dramatically

improve the prognosis of acute promyelocytic leukemia (APL),

a malignancy caused by genetic translocations with the retinoic

acid receptor (RAR), RARa (de Thé and Chen, 2010). Although

numerous investigations of APL have highlighted the ability of

RA to promote myeloid cell differentiation (Kastner et al.,

2001), over the last 20 years it has become clear that this metab-

olite influences multiple immune cell lineages and an array of

immunological functions (Cantorna et al., 1995; Chun et al.,

1992). In this review, we discuss recent advances that have es-

tablished RA as central to both immunological tolerance and the

elicitation of adaptive immune responses. Further, we provide

a comprehensive overview of the cell types and factors that

control the production of RA and discuss how host perturbations

may affect the ability of this metabolite to control tolerance and

immunity or to instigate pathology.

Acquisition, Storage, and Metabolism of Vitamin A
Vitamin A is a fat-soluble essential nutrient obtained through

foods containing vitamin A precursors (i.e., carotenoids) or

vitamin A itself in the form of retinyl esters (Figure 1; Harrison,

2005; Yeum and Russell, 2002). Subsequent to absorption and
arrival into circulation, retinyl esters enter the liver, where most

of the vitamin A in the body is stored (Blomhoff and Blomhoff,

2006). Liver retinyl esters are continually hydrolyzed into retinol

and deployed into circulation (Wolf, 2007). Bile, which drains

from the liver into the small intestinal duodenum, is also enriched

in retinol (Jaensson-Gyllenback et al., 2011). Once inside a cell,

widely expressed alcohol dehydrogenases (ADH) oxidize retinol

into retinal, which can then bind to more selectively expressed

retinal dehydrogenases (RALDH) for oxidation into retinoic

acid (RA). RA can be generated in multiple isoforms; however,

the all-trans isoform predominates in most tissues (Mic et al.,

2003) and, therefore, the immunological effects of this com-

pound will be the focus in this review. Although RA is constitu-

tively present in serum at low amounts (Kane et al., 2008),

RALDH induction is a tightly controlled process and subject to

change during perturbations to homeostasis (Figure 2).

Retinoic Acid Sythesis and Induction of Cellular
Migration into Mucosal Sites
Prior to its function, RA binds to nuclear receptors, including

retinoic acid receptors (RAR), retinoid X receptors (RXR), and,

under certain circumstances, PPARbd (Chambon, 1996; Schug

et al., 2007). Notably, all-trans RA exclusively binds RXR via

heterodimers with the RAR family, which consists of three

receptors: RAR alpha (RARa), beta (RARb), and gamma (RARg)

(Chambon, 1996).

Appropriate immune responses depend on the ability of

effector and regulatory lymphocytes to home to the site of infec-

tion or injury. In this regard, dendritic cells (DCs) have been

shown to foster lymphocyte migration into tissues where antigen

was initially encountered (Campbell and Butcher, 2002). For

instance, DCs from gastrointestinal tract and associated

lymphoid tissue (GALT), but not the periphery, were shown to

induce the mucosal homing markers—integrin heterodimer

a4b7 and chemokine receptor CCR9—on stimulated effector

T cells (Johansson-Lindbom et al., 2003, 2005; Mora et al.,

2003). The insight that mucosal DCs triggered a4b7 and CCR9

expression through the capacity to synthesize RA was based

on the seminal observation that adding RA to T cells during acti-

vation selectively induced these gut homing markers (Iwata
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Figure 1. Vitamin A Metabolism and Major
Cellular Sources of Retinoic Acid during
Homeostasis
Dietary vitamin A is absorbed in the intestine and
transported through the lymphatics into blood
circulation where it enters the liver for storage.
Retinol chaperoned by retinol binding protein
(RBP) is constitutively deployed from the liver into
circulation. It is also secreted in bile that drains into
the small intestine. Upon entry into cells, retinol is
reversibly oxidized into retinal via the alcohol
dehydrogenase (ADH) family. Depending on the
cell type (see table), retinal can undergo irrevers-
ible metabolism into retinoic acid (RA) via retinal
dehydrogenases (RALDH). The table provides an
overview of major cellular sources of RA during
steady-state conditions. Table includes cellular
location, the isoform(s) of RALDH that are ex-
pressed, and the factors known to induce RALDH
expression in each cell type.
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et al., 2004). In a reciprocal fashion, blockade of RAR-mediated

signaling and transcription in cultures containing GALT DCs

reversed induction of a4b7 and CCR9 (Iwata et al., 2004; Svens-

son et al., 2008). Recently, RA was revealed to predominantly

affect the a4 subunit of a4b7 via binding of RARa to a RAR

response element within the regulatory region of the gene that

encodes a4 (DeNucci et al., 2010; Kang et al., 2011). A retinoic

acid response element half-site was also recently discovered

in the promoter region of CCR9, which permits RARa-RXR het-

erodimer binding (Ohoka et al., 2011). These data coupled with

the prominent baseline expression of Rara, the gene encoding

RARa, in CD4+ T cells, pinpoint RARa as an important mediator

of lymphocyte trafficking. Nevertheless, they do not exclude

a role for other RARs inmediating the regulation of thesemarkers

on other defined subsets.

An assessment of vitamin A-synthesizing enzymes demon-

strated that GALT DCs express mRNA for Aldh1a2, the gene

encoding RALDH2 (Iwata et al., 2004; Schulz et al., 2009; Yokota

et al., 2009). Subsequent studies have shown that basal Aldh1a2

expression in GALT DCs is enriched in CD103+ DC subsets,

which induce a4b7 and especially CCR9 far more potently than

the CD103� DC compartment (Figure 1; Coombes et al., 2007;

Johansson-Lindbom et al., 2005; Yokota et al., 2009). In the

small intestinal LP, this population is uniquely equipped with

migratory capacity and therefore accumulates in the mesenteric

lymph nodes (MLN) (Bogunovic et al., 2009; Jaensson et al.,

2008; Jang et al., 2006; Schulz et al., 2009). CD103+ DCs within

the MLN and Peyer’s patches (PP) are comprised of two subsets

based on expression of integrin CD11b. The CD103+CD11b�

subset is related to the CD103+CD11b� and CD8a+ DC subsets

outside of the GALT (Edelson et al., 2010; Ginhoux et al., 2009;

Hildner et al., 2008). However, CD103+CD11� DCs residing at

other sites fail to produce appreciable RALDH, suggesting that

factors within the GI tract induce RA-synthesizing capacity in

this subset (Guilliams et al., 2010). In this regard, vitamin A itself
14 Immunity 35, July 22, 2011 ª2011 Elsevier Inc.
is indispensible for DC production of

Aldh1a2 during homeostasis (Jaensson-

Gyllenback et al., 2011; Molenaar et al.,

2011; Yokota et al., 2009). This may

involve Wnt-b-catenin-driven signals,
because ablation of b-catenin in CD11c cells attenuates their

expression of RALDH (Manicassamy et al., 2010). Microbial

stimuli also appear to have an additional influence on RALDH

expression; moderate decreases were observed in GALT DCs

isolated from mice reared in germ-free conditions or genetically

deficient in the microbial signaling adaptor MyD88 (Guilliams

et al., 2010). Toll-like receptor 2 (TLR2)-stimulating ligands, in

particular, were found to most potently induce RALDH expres-

sion (Manicassamy et al., 2009; Wang and Sampson, 2011).

In addition to DCs, several nonhematopoietic lineages within

the gastrointestinal tract and associated lymphoid tissues

(GALT), such as epithelia (expressing Aldh1a1, encoding

RALDH1) and stromal cells (Aldh1a1, Aldh1a2, and Aldh1a3),

share the capacity to synthesize RA (Figure 1; Edele et al.,

2008; Hammerschmidt et al., 2008; Iliev et al., 2009; Iwata

et al., 2004; Molenaar et al., 2011). Intestinal epithelial cells

have been shown to imprint bone marrow DCs with signature

characteristics of LP DCs, via provision of soluble factors,

including RA (Edele et al., 2008; Iliev et al., 2009). They may

also provide RA in trans and reinforce the expression of mucosal

homing markers on lymphocytes. Stromal cells within the MLN

were also found to support mucosal homing, probably through

indirect effects on APCs (Figure 2; Hammerschmidt et al.,

2008; Stock et al., 2011). Altogether, these findings support

the observation of a prominent reduction in the number of

activated T lymphocytes within the intestinal effector sites in

adult mice reared on a vitamin A-deficient diet, as well as in

Rara-deficient (Rara�/�) mice (Hall et al., 2011; Iwata et al., 2004).

Other DC populations, particularly in the draining lymph nodes

of the skin and lung, express Aldh1a2 (Figure 1; Guilliams et al.,

2010). The finding that RA signaling occurs in sites not typically

associated with mucosal homing raises several interesting

points of discussion. First, crosstalk with other cells in these

tissues may modulate the capacity of DCs to induce mucosal

homing. For example, prostaglandin E2, from the stroma of
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Figure 2. The Role of Retinoic Acid in the Regulation of CD4+ T Cell
Homeostasis and Immunity in the GI Tract
TheGALT is a retinoic acid (RA)-rich environment, containing a vast presence of
RA-synthesizing cells, including resident epithelia (IECs) and stromal cells
(SCs), as well as migratory CD103+ DCs. RA produced by IECs may confer
characteristic features to lamina propria DCs, whereas RA produced by SCs in
the draining mesenteric lymph nodes may reinforce lymphocyte acquisition of
mucosal homing markers and potentially other effector functions. During
steady-state conditions (top), RA sustains oral tolerance and helps maintain
barrier integrity. These processes are mediated in large part by the ability of
RA to support the induction of Foxp3+ iTreg and Th17 cells. Lamina propria
CD103+ DCs induce and recruit heterogeneous CD4+ T cell populations during
steady state, as result of their ability to respond to commensalmicrobial signals
andproduce bothRAand TGF-b. During inflammation or infection (bottom), the
inflammatory milieu triggers altered cytokine production by CD103+ DCs,
leading to RARa-dependent effector CD4+ T cell activation and differentiation.
Innate cell populations, including antigen-presenting cells, are recruited during
inflammation and also contribute toRAproduction. Factors in the inflammatory
milieu, including TLR-ligands and the cytokine GM-CSF, promote RALDH
activity in CD103+ DCs and potentially in recruited innate cells.
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peripheral tissues, was recently shown to antagonize RALDH

expression (Stock et al., 2011). Second, RA signaling may also

influence migration to peripheral sites. In this regard, integrin

a4 can also form heterodimers with integrin subunit, b1, which

is rapidly upregulated in response to T cell receptor (TCR) stim-

ulation and impedes formation of the a4b7 heterodimer (DeNucci
et al., 2010). a4b1 binds to VCAM-1, which is present on endothe-

lial cells and upreguated during inflammation, so RA may addi-

tionally influence migration to peripheral sites during inflamma-

tion (Figure 3; Henninger et al., 1997; Muller, 2011). Further

studies are essential to understand how crosstalk between

DCs and other cells can modulate RALDH activity, which may

produce a better understanding of how accessory cells

contribute to the regulation of immunity during both homeostasis

and inflammation. Collectively these findings indicate that RA

signaling occurs in tissues throughout the host and suggest

that apart from mucosal homing, it plays a general role in both

tolerance and inflammation.

Retinoic Acid in Plasma Cell Differentiation
and Mucosal IgA
The discovery that RA was critical for the generation of immuno-

globulin A (IgA)-secreting B cells offered further evidence of

a multifactorial role for RA in mucosal immunity (Mora et al.,

2006). A number of studies have demonstrated the potent

capacity of DCs from the intestinal LP, MLN, and PP to drive

naive B cell differentiation into IgA+ B cells (Macpherson and

Uhr, 2004;Mora et al., 2006; Uematsu et al., 2008), and the ability

of stromal-derived cells to support IgA+ class switching in acti-

vated B cells (Fagarasan et al., 2001; Suzuki et al., 2010).

Synthesis of RA by GALT DCs is crucial for the generation of

IgA+ B cells, as shown by the fact that antagonism of RA

signaling markedly reduce IgA+ production (Mora et al., 2006;

Uematsu et al., 2008). Complementing this finding, addition of

RA to DC cocultures in which DCs lacked the capacity to synthe-

size RA restores IgA+ production. Notably, microbial-induced

cytokines, such as IL-6, are also integral cofactors in this

process (Mora et al., 2006; Uematsu et al., 2008). In addition,

although inhibitory at high concentrations (Mora et al., 2006),

TGF-b-mediated signals also play a decisive role in IgA+ produc-

tion (Cazac and Roes, 2000). This has been verified in systems

analyzing the capacity of mucosal stromal cells to foster IgA+

B cell generation (Fagarasan et al., 2001; Suzuki et al., 2010).

In a manner analogous to peripheral DCs, peripheral follicular

dendritic cells are able to efficiently support IgA+ production

only when treated with RA and a MyD88-dependent microbial

stimulus (Suzuki et al., 2010). This gain of function is dependent

on the ability of RA signaling to induce secretion of TGF-b in

peripheral follicular dendritic cells. RA signaling promotes

a similar effect (i.e., induction of TGF-b production) in bone

marrow-derived DCs via inhibition of suppressor of cytokine

signaling 3 (SOCS3) activity (Feng et al., 2010). These findings

suggest interdependency between TGF-b- and RA-propagated

signals in several cell lineages.

Another significant source of IgA+ production is B1-B cells,

which contribute to mucosal integrity during homeostasis and

early responses to pathogens. RAwas recently shown to enforce

the homeostatic maintenance of this compartment through

direct regulation of the transcription factor NFATc1 (Maruya

et al., 2011). Combined with the capacity of RA to generate

IgA+ B cells and facilitate their mucosal localization, vitamin A

deficiency leads to a severe decrease in intestinal IgA and

a marked decrease in the serum (Maruya et al., 2011; Mora

et al., 2006). Altogether, these findings underscore the impor-

tance of RA in IgA responses and humoral immunity.
Immunity 35, July 22, 2011 ª2011 Elsevier Inc. 15
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Pathology
During inflammation, increasing RA signaling can potentiate the production of
inflammatory cytokines by DCs, and in turn promote effector T cell differenti-
ation. Direct interactions of RA with T cells may further contribute to the
activation status of the cells and promote localization to inflamed tissues. RA
may also engender the formation of tertiary lymphoid structures and facilitate
chronic inflammation.
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Retinoic Acid in Extrathymic Treg Cell Induction
and Oral Tolerance
Foxp3 regulatory T (Treg) cells maintain both peripheral and

mucosal homeostasis throughout the lifespan of the host (Jose-

fowicz and Rudensky, 2009; Kim et al., 2007). Treg cells typically

develop during thymic selection processes; however, they also

develop extrathymically in response to chronic antigen stimula-

tion or exposure to environmental and food antigen at mucosal

sites (Curotto de Lafaille and Lafaille, 2009). Development of

inducible Treg (iTreg) cells, but not thymic-derived Treg cells,

requires transcription factor binding to the intronic enhancer

element (enhancer-1) of the foxp3 locus, also known as

conserved noncoding sequence 1 (CNS1). iTreg cell develop-

ment is also dependent on several soluble mediators, including

TGF-b, IL-2, and, as recent data demonstrate, RA (Hall et al.,

2011; Knoechel et al., 2005; Kretschmer et al., 2005; Mucida

et al., 2005; Tone et al., 2008; Zheng et al., 2010).

The insight that RA served as a cofactor in the generation of

iTreg cells stemmed from in vitro findings that relative to splenic

DCs, MLN and LP DCs potently induced iTreg cell differentiation

in the presence of TGF-b (Coombes et al., 2007; Mucida et al.,

2007; Sun et al., 2007). Separation of MLN DCs and LP DCs

based on CD103 expression revealed that the CD103+ subsets

were specifically able to yield iTreg cells in the absence of exog-

enous factors, implying that RA signaling potentially contributed

to this process (Coombes et al., 2007; Sun et al., 2007). Indeed,

a pan-RAR antagonist strongly inhibited iTreg cell generation

(Coombes et al., 2007; Mucida et al., 2007; Sun et al., 2007).

Blockade of TGF-b in cocultures with CD103+ GALT DCs also

diminished iTreg cell generation. The coordinate ability of GALT

DCs to produce both RA and TGF-b may involve conditioning

signals from RA during developmental maturation (Figure 2;

Feng et al., 2010). Assessment of DCs in a retinoic acid response

reporter mouse revealed abundant RAR binding activity in GALT
16 Immunity 35, July 22, 2011 ª2011 Elsevier Inc.
CD103+ DCs (Jaensson-Gyllenback et al., 2011). The level of

RAR binding activity in DCs from several tissues correlated

with both the concentration of retinol and the percentage of

CD103+ DCs expressing RALDH2 in those tissues, which

suggests that DC conditioning by RA may occur in situ. Further-

more, GALT CD103+ DCs highly expressed mRNA for the gene

encoding RARa, implicating this receptor as a dominant medi-

ator of such conditioning signals (Jaensson-Gyllenback et al.,

2011).

The addition of RA to cocultures with splenic DCs and TGF-b

also dramatically enhanced iTreg cell induction (Benson et al.,

2007; Mucida et al., 2007, 2009; Sun et al., 2007). This effect is

dependent on T cell expression of RARa (Hill et al., 2008), which

is upregulated upon stimulation in the presence of TGF-b

(Schambach et al., 2007). Remarkably, exogenous RA can

sustain iTreg cell generation in conditions that typically oppose

it, such as the presence of certain inflammatory cytokines (IL-6,

IL-21) and high costimulatory environments (Benson et al.,

2007; Mucida et al., 2007; Xiao et al., 2008). Stimulation of

CD4+ T cells in the presence of TGF-b induces IL-6R expression,

which is reversedwith the additionofRA (Figure 2;Hill et al., 2008;

Xiao et al., 2008). Because RA did not appear to enhance the

inherently unstable phenotype of iTreg cells (Floess et al., 2007;

Hill et al., 2008), RA-mediated repression of IL-6R could poten-

tially explain why iTreg cells generated in the presence of RA

were reportedly more stable in vivo after adoptive transfer (Ben-

son et al., 2007). Corroborating in vitro findings, the generation of

iTreg cells in response to antigen feeding is abrogated in animals

deficient in vitamin A and, therefore, lacking RA (Hall et al., 2011).

Oral tolerance—the active suppression of inflammatory

responses to food and other orally ingested antigens—is

critically dependent on the generation of iTreg cells (Curotto de

Lafaille et al., 2008; Weiner et al., 2011). Recent evidence indi-

cates that in addition to supporting iTreg cell differentiation,

RA-mediated trafficking of T cells is required for a sustained

expansion of iTreg cell numbers in the gut (Hadis et al., 2011).

This expansion in numbers is propagated through IL-10-medi-

ated interactions with resident CD103� antigen-presenting cells

(APCs). In previous studies, similar interactions were shown to

contribute to both the induction and maintenance of Treg cells

(Denning et al., 2007; Murai et al., 2009). Altogether, these find-

ings indicate that RA signaling is a keystone in the development

of oral tolerance.

In the absence of RA, other mechanisms may compensate for

the loss of these tolerogenic processes. For instance, elevated

frequencies of Foxp3�IL-10+ Tr1 cells have been reported in

vitamin A-deficient mice and could be generated in vitro in the

presence of RAR antagonists andmicrobial-inducedDCproduc-

tion of IL-6 and IL-21 (Maynard et al., 2009). Despite the impor-

tance of RA for generation of iTreg cells, neither the frequency

nor absolute numbers of Treg cells are reduced during vitamin

A deficiency (Hall et al., 2011). Thymic Treg cell differentiation

is also intact in Rara�/� animals (Hill et al., 2008). Although these

findings suggest that there are distinct requirements for induc-

ible versus thymic-derived Treg cells, it still remains unclear

whether intrathymic Treg cell differentiation and regulatory func-

tion is impacted in the absence of RA.

In vivo requirements notwithstanding, RA is insufficient to

induce Foxp3 in the absence of TGF-b (Benson et al., 2007;
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Mucida et al., 2007; Sun et al., 2007). These findings imply that

responsiveness to TGF-b is a prerequisite for RA to access

Foxp3 differentiation programs. In this regard, blockade of

TGF-bRI kinase activity, which inhibits TGF-b-induced Smad2

and Smad3 phosphorylation (Sorrentino et al., 2008), diminished

TGF-b-mediated iTreg cell generation and abrogated the addi-

tive effect of RA (Xu et al., 2010). Several preceding studies

noted that RA enhances the total expression of Smad3 in acti-

vated CD4+ T cells; however, TGF-b is required to trigger

Smad3 activation (i.e., phosphorylation) (Nolting et al., 2009;

Xiao et al., 2008). Furthermore, TGF-b was observed to prevent

the intracellular degradation of RA (Takeuchi et al., 2011),

prompting the possibility that RA and TGF-b cooperatively

promote enhanced Smad3 activity. Based on the importance

of Smad3 activation in CNS1-mediated Foxp3 expression

(Tone et al., 2008), the role of RA in the regulation of CNS-1

was examined, which led to the identification of a potential

RAR binding site (Xu et al., 2010). Accordingly, RA was shown

to dramatically enhance TGF-b-induced chromatin accessibility

and Smad3 binding in CNS1. The strong association between

RA and the regulation of CNS1 not only provides a tentative

molecular mechanism for the enhancement of iTreg cell genera-

tion, but further suggests that RA synthesis pathways may be

manipulated during infection and inflammation to shift the

balance between Treg and effector T cells and in turn influence

immunopathology.

Influence of Retinoic Acid on Effector CD4+ T Cell
Differentiation and Function
The role of RA in TGF-b-dependent responses has been further

evaluated in Th17 cell differentiation. Th17 cells, which produce

IL-17A (IL-17), IL-17F, IL-21, and IL-22, promote control of

bacteria and fungal infections at mucosal sites (Littman and

Rudensky, 2010). They are induced in response to TGF-b,

combinations of the Stat3 signaling cytokines—IL-6, IL-21, and

IL-23—and IL-1 (Korn et al., 2009). Although linked to the

pathogenesis of autoimmune responses (Iwakura et al., 2011),

Th17 cells provide an important layer of protection at mucosal

interfaces and are typically detected during steady state in these

regions (Ivanov et al., 2006, 2008). Several recent studies

revealed that Th17 cells are virtually ablated in the GALT of

mice reared on a vitamin A-deficient diet during steady state

(Cha et al., 2010; Wang et al., 2010). In concert with the loss of

Th17 cells, the ability of APCs to produce IL-6, which promotes

Th17 cell polarization, is reduced in vitamin A-deficient mice (Hall

et al., 2011). Despite the likelihood that additional factors are

complicit in the diminished number of Th17 cells during vitamin

A deficiency, these data suggest that RA is critical for the

in vivo differentiation and/or survival of Th17 cells. In support

of this, in conjunction with microbial stimulation, a low dose of

RA (�1 nM) in splenic DC cocultures was found to potentiate

Th17 cell generation (Uematsu et al., 2008). These findings

suggest that a synergy between RA- and microbial-driven

signals promote Th17 cell differentiation in vivo (Figure 2).

Importantly, the ability of RA to support Th17 cell differentiation

probably results from combined actions on DCs and T cells,

because addition of RA to Th17 cell-polarizing conditions in

APC-less cultures did not enhance Th17 cell differentiation

(Wang et al., 2010).
In parallel with the initial discovery that RA enhanced iTreg cell

differentiation, RA was observed to suppress Th17 cell genera-

tion (Elias et al., 2008; Kang et al., 2007; Mucida et al., 2007).

RA was shown to inhibit IL-6R and IL-23R upregulation induced

by TGF-b and IL-6, respectively (Xiao et al., 2008; Zhou et al.,

2007). Accordingly, RA supplementation in vitamin A-replete

settings could suppress Th17 cell responses and IL-23-driven

immunopathology during Listeria monocytogenes infection and

autoimmune experimental encephalitis (Mucida et al., 2007;

Xiao et al., 2008). Thus, RA is required for the in vivo promotion

of Th17 cell differentiation, and it also may directly contribute

to Th17 cell regulation.

In addition to Th17 cells, RA can exert direct regulatory effects

on other effector T cell populations (Hill et al., 2008). For

instance, RA was shown to inhibit IFN-g production from CD8+

T cells and Th1 cells (Cantorna et al., 1995, 1996; Stephensen

et al., 2002). A previous study argued that such regulation might

have contributed to impaired Th2 cell responses to the parasitic

infection Trichinella spiralis during vitamin A deficiency (Carman

et al., 1992). RAwas also shown to relieve the inhibitory influence

of effector T cells in the generation iTreg cells by directly sup-

pressing their production of IL-4 and IL-21, which was previously

demonstrated to potently antagonize iTreg cell generation (Hill

et al., 2008; Korn et al., 2007; Nurieva et al., 2007; Wei et al.,

2007). Further investigation into the temporal regulation of reti-

noid receptor expression during helper T cell polarization should

clarify the molecular mechanisms by which RA controls cytokine

production in various effector T cell subsets. Although the

direct effects of RA on effector T cells should continue to be

explored in more pathological contexts, these findings support

a model in which RA-rich microenvironments can limit cytokine

production by terminally differentiated effector T cells and,

thus, T cell-mediated tissue pathology.

Retinoic Acid-Retinoic Acid Receptor Signaling
in CD4+ T Cell Activation
The recent descriptions of RA in immunoregulation have in some

ways overshadowed the importance of this metabolite in gener-

ating functional immunity. Indeed, several studies have noted

potent adjuvant effects of RA during infection (Dawson et al.,

2009; Yamada et al., 2007). One aspect in the amplification of

these responses may involve the vital role of RA in T cell activa-

tion. For instance, in serum-free cultures, RA dramatically

enhances TCR-mediated CD4+ T cell proliferation in an IL-2-

dependent manner (Engedal et al., 2006). The NFAT family of

transcription factors regulates an array of functions in multiple

cell types; in T cells these include production of IL-2 and the

full acquisition of effector properties (Macian, 2005; Peng

et al., 2001). mRNA expression of multiple NFAT isoforms, which

is reduced in B1-B cells during vitamin A deficiency, rebounds to

normal amounts after treatment with RA. NFAT proteins are also

markedly reduced in T cells during vitamin A deficiency and it is

possible that RA regulates NFAT transcription and/or stability in

these cells, as well (Maruya et al., 2011). Interestingly, NFATc2

was recently shown to cooperate with RARa-RXR heterodimers

to induce CCR9, whereas NFATc1 inhibited CCR9 induction

(Ohoka et al., 2011). These findings suggest that RA establishes

an intimate link between T cell activation, effector function, and

homing properties. It will be important to determine whether
Immunity 35, July 22, 2011 ª2011 Elsevier Inc. 17
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T cell expression and localization of NFAT proteins are differen-

tially regulated in distinct anatomical sites and how their modu-

lation converges with RA availability in these sites to influence

expression of homing markers.

Naive CD4+ T cells basally express the genes encoding RARa

(Rara) and RARg (Rarg) (Hall et al., 2011; Ohoka et al., 2011).

Although previous data suggest that RARg is dispensable for

CD4+ T cell activation (Dzhagalov et al., 2007), recent data reveal

that RARa is important for this process (Hall et al., 2011). Specif-

ically, Ca2+ mobilization in response to TCR-CD3 engagement is

impaired in CD4+ T cells from Rara�/� mice or normal cells

exposed to a pan-RAR antagonist (Hall et al., 2011). Ca2+ mobi-

lization results in NFAT translocation into the nucleus, so these

data suggest that both early and sustained T cell activation are

impaired when RA signaling is deficient (Feske, 2007). In this

regard, activation of the mTOR kinase pathways, which play

important roles in directing helper T cell responses, are also

reduced in Rara�/� T cells (Delgoffe et al., 2009, 2011; Zhang

et al., 2011). The reductions in these signaling pathways may, in

part, contribute to the immunodeficient state observed in animals

devoid of RA-RARa signaling, which will be discussed below.

Precisely how RA-RARa signals mediate early T cell activation

events is unclear. RARa is potent transcriptional regulator of gene

networks and known to constitutively bind to DNA. Such binding

may exert a tonic influence on the DNA binding capacity of other

proteins involved in the regulation of T cell activation. For

instance, RA-RARa regulates DNA binding of the AP-1 transcrip-

tion factor, c-Jun, which is involved in responses to stress- and

TCR-mediated signals (Schüle et al., 1991). In addition to its

well-appreciated nuclear activity, extranuclear functions of

RARa have also been described (Rochette-Egly and Germain,

2009). In this regard, RARawas observed to regulate expression

of the phosphatase MKP-1, which is an important mediator of

effector T cell differentiation (Lee et al., 1999; Zhang et al., 2009).

Furthermore, RARamayassociatewith amembrane and/or cyto-

solic signaling scaffold important in T cell activation (Rochette-

Egly and Germain, 2009). Recent findings indicate that RXR

expression is barely detectable in naive T cells, suggesting that

the effects of RARa on T cell activation may proceed indepen-

dently of RXR heterodimerization. Conversely, RAR-RXR hetero-

dimerization is required for the acquisition of mucosal homing

markers (Ohoka et al., 2011). Although further research into the

mechanism by which RA-RARa regulates T cell signaling is

needed, one can construct a model in which RA regulates adap-

tive T cell responses through dichotomous roles: on the one hand

promoting the initiation of effector T cell differentiation and, on the

other hand, restraining inflammatory T cell responses in tissues.

Retinoic Acid in Infection and Immunity
Recent human data highlight the correlation between vitamin A

status and T cell function (Ahmad et al., 2009). Although vitamin

A has gained widespread acceptance as a clinical health inter-

vention, skepticism of its efficacy has lingered because of

inconsistency in outcomes of various vitamin A supplementa-

tion programs and a subpar understanding of the mechanisms

it employs to combat infectious disease (Sommer, 2008; Win-

tergerst et al., 2007). The latter, in and of itself, poses a signifi-

cant challenge to developing efficacious supplementation

programs. Studies utilizing various animal models of vitamin A
18 Immunity 35, July 22, 2011 ª2011 Elsevier Inc.
or retinoid receptor deficiency have begun to close this knowl-

edge gap, revealing an integral role for RA in vitamin A-depen-

dent immunity. Impaired and/or dysregulated T cell responses

have been observed in various models of infection and vacci-

nation strategies during vitamin A and/or retinoid receptor

deficiency (Carman et al., 1992; Dzhagalov et al., 2007; Hall

et al., 2011; Stephensen et al., 2004). During infection with

Toxoplasma gondii, an intracellular replicating pathogen

controlled by IFN-g (Suzuki et al., 1988), the acute Th1 cell

response and parasite clearance are substantially impaired in

vitamin A-deficient mice (Hall et al., 2011). Similarly, vaccination

with an E. coli-derived heat-labile enterotoxin mucosal adju-

vant, LT(R129G), which simultaneously elicits Th1 and Th17

cells (Hall et al., 2008), yields diminished Th1 and Th17 cell

responses in these animals. Short-term treatment with RA

immediately prior to and during challenge completely rescued

CD4+ T cell responses both to acute T. gondii infection and

vaccination in vitamin A-deficient mice (Hall et al., 2011). These

findings demonstrated an essential role for RA in the develop-

ment of Th1 and Th17 cell responses.

RA signaling appears to control the fate of T cell immunity

largely through RARa and RARg. The CD4+ T cell response to

vaccination with LT(R129G) was strongly diminished in Rara�/�

mice (Hall et al., 2011). CD4+ T cell activation was reduced in the

absence of RARa, but additional functional impairments may

have also factored into this outcome. Preliminary evidence

suggests that RARa regulates not just the proper maturation

of DCs in the GALT (Jaensson-Gyllenback et al., 2011) but

also their ability to drive inflammatory responses in certain path-

ologic settings, which will be discussed below (Depaolo et al.,

2011). Future studies employing lineage-targeting strategies

will be integral for discerning the contributions of RARa in

individual cell types to immunological outcomes. Although the

role of RARa in CD8+ T cell function remains to be explored,

RARg, which is dispensable for CD4+ T cell and humoral

responses, was shown to be required for full effector differenti-

ation of CD8+ T cells in response to infection with Listeria

monocytogenes (Dzhagalov et al., 2007).

A direct role for RARg in CD8+ T cell activation has not yet been

addressed; however, this receptor controls optimal macrophage

production of inflammatory cytokines in response to microbial

stimuli (Dzhagalov et al., 2007). A role for RA signaling in macro-

phages is consistent with another study, which showed that

RA enhanced macrophage activation in response to in vitro

infection with Mycobacterium tuberculosis (Yamada et al.,

2007). Altogether, these data illustrate the ability of RA to regu-

late a network of innate and adaptive immune cell functions,

which through nonredundant receptor signaling pathways power

functional immune responses. More research is required to

elucidate how RARb signals fit into the control of vitamin

A-dependent immunity. In contrast to the other RARs, RARb

expression appears to largely depend on RA itself and, therefore,

may play a prominent role in the regulation of mucosal immune

responses (Molenaar et al., 2011; Suzuki et al., 2010). RARb

was also found to regulate the recruitment of lymphoid tissue-

inducer cells during embryogenesis via stromal cell induction

of CXCL13 (van de Pavert et al., 2009). Thus, it will be worthwhile

to examine the role of RA in the formation of tertiary lymphoid

structures during chronic inflammation.
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Retinoic Acid in Inflammation
Chronic inflammatory syndromes arise as a consequence of

genetic polymorphisms in concert with accumulating environ-

mental exposure to toxins, pathogens, and diet (Yazdanbakhsh

et al., 2002). Western diets are becoming increasingly associ-

ated with a higher prevalence of inflammatory disorders,

including allergies and inflammatory bowel diseases (Garrett

et al., 2010; Wang and Sampson, 2011). Several studies have

suggested that in vivo iTreg cell generation can prevent and/or

mitigate these manifestations (Curotto de Lafaille and Lafaille,

2009; Lacy-Hulbert et al., 2007; Travis et al., 2007). In this regard,

treatments that promote RA metabolism may constitute an

effective strategy to restore the regulatory balance during

chronic inflammation. For example, treatment with the TLR2

agonist zymosan was shown to induce RALDH production by

nonmucosal DCs and ameliorated pathology in a model of

autoimmunity (Figure 2; Manicassamy et al., 2009). Neverthe-

less, in previous studies, mice fed a diet high in vitamin A

exhibited more vigorous responses against grafts and tumors,

suggesting that elevated retinoid levels were potentially detri-

mental in certain inflammatory contexts (Figure 3; Malkovský

et al., 1983a, 1983b). In this regard, a recent study demonstrated

that RA-driven signals in an inflammatory environment fostered

reactivity to dietary glutens in a mouse model of celiac disease

(Figure 3; Depaolo et al., 2011; Jabri and Sollid, 2009). In partic-

ular, RA was demonstrated to synergize with an IL-15-rich milieu

and potentiate production of IL-12 and IL-23 by mucosal DCs,

diminishing their capacity to promote iTreg cells and leading to

exacerbated responses to Gliadin (Depaolo et al., 2011). These

data reflect several reports describing a possible association

between pharmacological retinoid treatment and spontaneous

development of inflammatory bowel disease and point to

elevated activity of vitamin A metabolic pathways as potential

instigators of chronic inflammation (Figure 3; Crockett et al.,

2010; Reddy et al., 2006).

Concluding Remarks
Recent insights into the role of RA in the promotion and regu-

lation of multiple immunological pathways draw new attention

to the sweeping influence of vitamin A in immunity. Though

long on the radar of health experts trying to combat immuno-

deficiencies in developing nations, vitamin A is often over-

looked in developed regions where access to this nutrient is

plentiful. New data reveal that multiple factors influence the

generation of RA, including vitamin A itself, fatty acids, TLR

ligands, and GM-CSF, which promote RA synthesis and pros-

taglandin E2, which inhibits RA synthesis (Manicassamy et al.,

2009; Stock et al., 2011; Szatmari et al., 2006; Yokota et al.,

2009). Greater understanding of how these factors play into

RA synthesis during homeostasis and inflammation will be

essential for assessing their efficacy as therapeutic modalities

in the treatment of syndromes in which retinoid imbalances

may be involved. In summary, the potential of RA to transform

from an essential to pathological mediator of immune

responses raises many questions on how vitamin A metabolism

affects disease. Furthermore, because retinoids are prevalent

in clinical settings (de Lera et al., 2007), an additional consider-

ation in their use may be the patient’s risk factors for inflamma-

tory disease.
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Schüle, R., Rangarajan, P., Yang, N., Kliewer, S., Ransone, L.J., Bolado, J.,
Verma, I.M., and Evans, R.M. (1991). Retinoic acid is a negative regulator of
AP-1-responsive genes. Proc. Natl. Acad. Sci. USA 88, 6092–6096.

Schulz, O., Jaensson, E., Persson, E.K., Liu, X., Worbs, T., Agace, W.W., and
Pabst, O. (2009). Intestinal CD103+, but not CX3CR1+, antigen sampling cells
migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206,
3101–3114.

Sommer, A. (2008). Vitamin a deficiency and clinical disease: An historical
overview. J. Nutr. 138, 1835–1839.

Sommer, A., Tarwotjo, I., Djunaedi, E., West, K.P., Jr., Loeden, A.A., Tilden, R.,
and Mele, L. (1986). Impact of vitamin A supplementation on childhood
mortality. A randomised controlled community trial. Lancet 1, 1169–1173.

Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V., Schus-
ter, N., Zhang, S., Heldin, C.H., and Landström, M. (2008). The type I TGF-beta
receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent
manner. Nat. Cell Biol. 10, 1199–1207.

Stephensen, C.B., Rasooly, R., Jiang, X., Ceddia, M.A., Weaver, C.T.,
Chandraratna, R.A., and Bucy, R.P. (2002). Vitamin A enhances in vitro Th2
development via retinoid X receptor pathway. J. Immunol. 168, 4495–4503.

Stephensen, C.B., Jiang, X., and Freytag, T. (2004). Vitamin A deficiency
increases the in vivo development of IL-10-positive Th2 cells and decreases
development of Th1 cells in mice. J. Nutr. 134, 2660–2666.

Stock, A., Booth, S., and Cerundolo, V. (2011). Prostaglandin E2 suppresses
the differentiation of retinoic acid-producing dendritic cells in mice and
humans. J. Exp. Med. 208, 761–773.

Sun, C.M., Hall, J.A., Blank, R.B., Bouladoux, N., Oukka, M., Mora, J.R., and
Belkaid, Y. (2007). Small intestine lamina propria dendritic cells promote de
novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204,
1775–1785.

Suzuki, Y., Orellana, M.A., Schreiber, R.D., and Remington, J.S. (1988). Inter-
feron-gamma: The major mediator of resistance against Toxoplasma gondii.
Science 240, 516–518.

Suzuki, K., Maruya, M., Kawamoto, S., Sitnik, K., Kitamura, H., Agace, W.W.,
and Fagarasan, S. (2010). The sensing of environmental stimuli by follicular
dendritic cells promotes immunoglobulin A generation in the gut. Immunity
33, 71–83.

Svensson, M., Johansson-Lindbom, B., Zapata, F., Jaensson, E., Austenaa,
L.M., Blomhoff, R., and Agace, W.W. (2008). Retinoic acid receptor signaling
levels and antigen dose regulate gut homing receptor expression on CD8+
T cells. Mucosal Immunol. 1, 38–48.
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Beke, P., Kusser, K., Höpken, U.E., Lipp, M., Niederreither, K., et al. (2009).
Chemokine CXCL13 is essential for lymph node initiation and is induced by ret-
inoic acid and neuronal stimulation. Nat. Immunol. 10, 1193–1199.

Wang, J., and Sampson, H.A. (2011). Food allergy. J. Clin. Invest. 121,
827–835.

Wang, C., Kang, S.G., HogenEsch, H., Love, P.E., and Kim, C.H. (2010). Ret-
inoic acid determines the precise tissue tropism of inflammatory Th17 cells in
the intestine. J. Immunol. 184, 5519–5526.

Wei, J., Duramad, O., Perng, O.A., Reiner, S.L., Liu, Y.J., and Qin, F.X. (2007).
Antagonistic nature of T helper 1/2 developmental programs in opposing
peripheral induction of Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA
104, 18169–18174.

Weiner, H.L., da Cunha, A.P., Quintana, F., and Wu, H. (2011). Oral tolerance.
Immunol. Rev. 241, 241–259.

Wintergerst, E.S., Maggini, S., and Hornig, D.H. (2007). Contribution of
selected vitamins and trace elements to immune function. Ann. Nutr. Metab.
51, 301–323.

Wolf, G. (1996). A history of vitamin A and retinoids. FASEB J. 10, 1102–1107.

Wolf, G. (2007). Identification of a membrane receptor for retinol-binding
protein functioning in the cellular uptake of retinol. Nutr. Rev. 65, 385–388.

Xiao, S., Jin, H., Korn, T., Liu, S.M., Oukka, M., Lim, B., and Kuchroo, V.K.
(2008). Retinoic acid increases Foxp3+ regulatory T cells and inhibits
development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling
and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181, 2277–2284.

Xu, L., Kitani, A., and Strober, W. (2010). Molecular mechanisms regulating
TGF-beta-induced Foxp3 expression. Mucosal Immunol. 3, 230–238.

Yamada, H., Mizuno, S., Ross, A.C., and Sugawara, I. (2007). Retinoic acid
therapy attenuates the severity of tuberculosis while altering lymphocyte and
macrophage numbers and cytokine expression in rats infected withMycobac-
terium tuberculosis. J. Nutr. 137, 2696–2700.

Yazdanbakhsh, M., Kremsner, P.G., and van Ree, R. (2002). Allergy, parasites,
and the hygiene hypothesis. Science 296, 490–494.

Yeum, K.J., and Russell, R.M. (2002). Carotenoid bioavailability and biocon-
version. Annu. Rev. Nutr. 22, 483–504.

Yokota, A., Takeuchi, H., Maeda, N., Ohoka, Y., Kato, C., Song, S.Y., and
Iwata, M. (2009). GM-CSF and IL-4 synergistically trigger dendritic cells to
acquire retinoic acid-producing capacity. Int. Immunol. 21, 361–377.

Zhang, Y., Reynolds, J.M., Chang, S.H., Martin-Orozco, N., Chung, Y.,
Nurieva, R.I., and Dong, C. (2009). MKP-1 is necessary for T cell activation
and function. J. Biol. Chem. 284, 30815–30824.

Zhang, S., Readinger, J.A., Dubois, W., Janka-Junttila, M., Robinson, R.,
Pruitt, M., Bliskovsky, V., Wu, J.Z., Sakakibara, K., Patel, J., et al. (2011).
Constitutive reductions in mTOR alter cell size, immune cell development,
and antibody production. Blood 117, 1228–1238.

Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X.P., Forbush, K., and Ruden-
sky, A.Y. (2010). Role of conserved non-coding DNA elements in the Foxp3
gene in regulatory T-cell fate. Nature 463, 808–812.

Zhou, L., Ivanov, I.I., Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E.,
Leonard, W.J., and Littman, D.R. (2007). IL-6 programs T(H)-17 cell differenti-
ation by promoting sequential engagement of the IL-21 and IL-23 pathways.
Nat. Immunol. 8, 967–974.

Ziouzenkova, O., Orasanu, G., Sharlach, M., Akiyama, T.E., Berger, J.P., Vier-
eck, J., Hamilton, J.A., Tang, G., Dolnikowski, G.G., Vogel, S., et al. (2007).
Retinaldehyde represses adipogenesis and diet-induced obesity. Nat. Med.
13, 695–702.


	The Role of Retinoic Acid in Tolerance and Immunity
	Introduction
	Acquisition, Storage, and Metabolism of Vitamin A
	Retinoic Acid Sythesis and Induction of Cellular Migration into Mucosal Sites
	Retinoic Acid in Plasma Cell Differentiation and Mucosal IgA
	Retinoic Acid in Extrathymic Treg Cell Induction and Oral Tolerance
	Influence of Retinoic Acid on Effector CD4+ T Cell Differentiation and Function
	Retinoic Acid-Retinoic Acid Receptor Signaling in CD4+ T Cell Activation
	Retinoic Acid in Infection and Immunity
	Retinoic Acid in Inflammation
	Concluding Remarks
	 Acknowledgments
	References


