63 research outputs found

    Enhancing efficiency of grease traps through the addition of lipase producing bacteria for wastewater management in the fresh markets

    Get PDF
    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ‚āļ­āļ‡āļ–āļąāļ‡āļ”āļąāļāđ„āļ‚āļĄāļąāļ™āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļĩāļ§āļ āļēāļžāļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāđ€āļŠāļĩāļĒāđƒāļ™āļ•āļĨāļēāļ”āļŠāļ”āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­: āļ•āļĨāļēāļ”āļŠāļ”āļ—āļģāļŦāļ™āđ‰āļēāļ—āļĩāđˆāļŠāļģāļ„āļąāļāļŦāļĨāļēāļĒāļ›āļĢāļ°āļāļēāļĢāļŠāļģāļŦāļĢāļąāļšāļ›āļĢāļ°āļŠāļēāļāļĢāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ•āđˆāļēāļ‡ āđ† āđāļ•āđˆāļ—āļ§āđˆāļēāļāļīāļˆāļāļĢāļĢāļĄāļ•āđˆāļēāļ‡ āđ† āđƒāļ™āļ•āļĨāļēāļ”āļŠāļ”āļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒ (Wastewater) āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ›āļĢāļ°āđ€āļ”āđ‡āļ™āļ›āļąāļāļŦāļēāļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāļ—āļĩāđˆāļŠāļģāļ„āļąāļāļ‚āļ­āļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ­āļļāļšāļĨāļĢāļēāļŠāļ˜āļēāļ™āļĩ āļāļēāļĢāļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļĩāļ§āļ āļēāļžāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļŠāļģāļŦāļĢāļąāļšāļ™āļģāļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļˆāļēāļāļ•āļĨāļēāļ”āļŠāļ”āđ€āļžāļ·āđˆāļ­āļĒāļāļĢāļ°āļ”āļąāļšāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ‚āļ­āļ‡āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđƒāļ™āļ•āļĨāļēāļ”āļŠāļ”āđ€āļ—āļĻāļšāļēāļĨ 3 āđāļĨāļ°āļ•āļĨāļēāļ”āļ”āļ­āļ™āļāļĨāļēāļ‡ āļˆāļąāļ‡āļŦāļ§āļ”āļ­āļļāļšāļĨāļĢāļēāļŠāļ˜āļēāļ™āļĩ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē Bacillus pumilus. strain UBU5 āļ—āļĩāđˆāļœāđˆāļēāļ™āļāļēāļĢāļ„āļąāļ”āđ€āļĨāļ·āļ­āļāđāļšāļ„āļ—āļĩāđ€āļĢāļĩāļĒāđāļĨāļ°āļ—āļ”āļŠāļ­āļšāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļāļģāļˆāļąāļ”āđ„āļ‚āļĄāļąāļ™āđƒāļ™āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāļēāļĄāļēāļĢāļ–āļāļģāļˆāļąāļ”āļ™āđ‰āļģāļĄāļąāļ™āđāļĨāļ°āđ„āļ‚āļĄāļąāļ™ (Oil and grease) āđƒāļ™āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđāļĨāļ°āđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ‚āļ­āļ‡āļ–āļąāļ‡āļ”āļąāļāđ„āļ‚āļĄāļąāļ™āļ‚āļ­āļ‡āļ„āļĢāļąāļ§āđ€āļĢāļ·āļ­āļ™āđāļĨāļ°āļĢāđ‰āļēāļ™āļ­āļēāļŦāļēāļĢāđ„āļ”āđ‰ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļĒāļąāļ‡āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ­āļĩāļāļ§āđˆāļēāļāļēāļĢāđ€āļ•āļīāļĄ Bacillus pumilus. strain UBU5 āđƒāļ™āļ–āļąāļ‡āļ”āļąāļāđ„āļ‚āļĄāļąāļ™āļŠāđˆāļ§āļĒāļĨāļ”āļ„āļ§āļēāļĄāļ–āļĩāđˆāđƒāļ™āļāļēāļĢāļ•āļąāļāđ„āļ‚āļĄāļąāļ™āļ­āļ­āļāļˆāļēāļāļ–āļąāļ‡āļ”āļąāļāđ„āļ‚āļĄāļąāļ™āđ‚āļ”āļĒāļ—āļĩāđˆāļĒāļąāļ‡āļ—āļģāđƒāļŦāđ‰āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ„āļĄāđˆāļĨāļ”āļĨāļ‡ āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē āļāļēāļĢāđ€āļ•āļīāļĄ Bacillus pumilus. strain UBU5 āđƒāļ™āļ–āļąāļ‡āļ”āļąāļāđ„āļ‚āļĄāļąāļ™āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ—āļĩāđˆāļˆāļ°āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļĒāļāļĢāļ°āļ”āļąāļšāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ‚āļ­āļ‡āļ•āļĨāļēāļ”āļŠāļ”āđ„āļ”āđ‰ Abstract: Fresh markets or wet markets have many functions for local people in many areas. Wastewater is generated from many activities in the market, causing environmental concerns and problems for Ubon Ratchathani, Thailand. This research aims to identify and testy suitable biological technologies for enhancing the levels of wastewater treatment of the Municipal Fresh Market 3 and Don Klang Market in Ubon Ratchathani. The empirical results from the laboratory and pilot testing revealed that adding the identified bacterium - Bacillus pumilus. strain UBU5 – in grease traps of households and restaurants was able to enhance the wastewater treatment efficiency and to reduce oil and grease. In addition, Bacillus pumilus. strain UBU5 was able to minimize the cleaning frequency of the grease traps without compromising the treatment efficiency. In sum, this study demonstrated that Bacillus pumilus. strain UBU5 has a high potential to be used in grease traps in fresh markets for enhancing the wastewater treatment efficiency and reducing the cleaning frequency

    Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement

    Get PDF
    Quinolizidine alkaloids (QAs) are toxic secondary metabolites found within the genus Lupinus, some species of which are commercially important grain legume crops including Lupinus angustifolius (narrow-leafed lupin, NLL), L. luteus (yellow lupin), L. albus (white lupin), and L. mutabilis (pearl lupin), with NLL grain being the most largely produced of the four species in Australia and worldwide. While QAs offer the plants protection against insect pests, the accumulation of QAs in lupin grain complicates its use for food purposes as QA levels must remain below the industry threshold (0.02%), which is often exceeded. It is not well understood what factors cause grain QA levels to exceed this threshold. Much of the early work on QA biosynthesis began in the 1970– 1980s, with many QA chemical structures well-characterized and lupin cell cultures and enzyme assays employed to identify some biosynthetic enzymes and pathway intermediates. More recently, two genes associated with these enzymes have been characterized, however, the QA biosynthetic pathway remains only partially elucidated. Here, we review the research accomplished thus far concerning QAs in lupin and consider some possibilities for further elucidation and manipulation of the QA pathway in lupin crops, drawing on examples from model alkaloid species. One breeding strategy for lupin is to produce plants with high QAs in vegetative tissues while low in the grain in order to confer insect resistance to plants while keeping grain QA levels within industry regulations. With the knowledge achieved on alkaloid biosynthesis in other plant species in recent years, and the recent development of genomic and transcriptomic resources for NLL, there is considerable scope to facilitate advances in our knowledge of QAs, leading to the production of improved lupin crops. ÂĐ 2017 Frick, Kamphuis, Siddique, Singh and Foley

    An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis Thaliana is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Get PDF
    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications

    The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus1[W][OA]

    No full text
    Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poorly understood. Here, we describe a C. roseus WRKY transcription factor, CrWRKY1, that is preferentially expressed in roots and induced by the phytohormones jasmonate, gibberellic acid, and ethylene. The overexpression of CrWRKY1 in C. roseus hairy roots up-regulated several key TIA pathway genes, especially Tryptophan Decarboxylase (TDC), as well as the transcriptional repressors ZCT1 (for zinc-finger C. roseus transcription factor 1), ZCT2, and ZCT3. However, CrWRKY1 overexpression repressed the transcriptional activators ORCA2, ORCA3, and CrMYC2. Overexpression of a dominant-repressive form of CrWRKY1, created by fusing the SRDX repressor domain to CrWRKY1, resulted in the down-regulation of TDC and ZCTs but the up-regulation of ORCA3 and CrMYC2. CrWRKY1 bound to the W box elements of the TDC promoter in electrophoretic mobility shift, yeast one-hybrid, and C. roseus protoplast assays. Up-regulation of TDC increased TDC activity, tryptamine concentration, and resistance to 4-methyl tryptophan inhibition of CrWRKY1 hairy roots. Compared with control roots, CrWRKY1 hairy roots accumulated up to 3-fold higher levels of serpentine. The preferential expression of CrWRKY1 in roots and its interaction with transcription factors including ORCA3, CrMYC2, and ZCTs may play a key role in determining the root-specific accumulation of serpentine in C. roseus plants
    • â€Ķ
    corecore