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Abstract: The enoyl-acyl carrier protein reductase InhA of M. tuberculosis is an attractive, 

validated target for anti-tuberculosis drug development. Moreover, direct inhibitors of InhA 

remain effective against InhA variants with mutations associated with isoniazid resistance, 

offering the potential for activity against MDR isolates. Here, structure based virtual screening 

supported by biological assays was applied to identify novel InhA inhibitors as potential anti-

tuberculosis agents. High-speed Glide SP docking was initially performed against two 

conformations of InhA differing in the orientation of the active site Tyr158. The resulting hits 

were filtered for drug-likeness based on Lipinski's rule and avoidance of PAINS-like properties, 

and finally subjected to Glide XP docking to improve accuracy. Sixteen compounds were 

identified and selected for in vitro biological assays, of which two (compounds 1 and 7) showed 

MIC of 12.5 and 25 µg/ml against M. tuberculosis H37Rv, respectively. Inhibition assays against 

purified recombinant InhA determined IC50 values for these compounds of 0.38 and 0.22 µM, 



respectively. A crystal structure of the most potent compound, compound 7, bound to InhA 

revealed the inhibitor to occupy a hydrophobic pocket implicated in binding the aliphatic 

portions of InhA substrates but distant from the NADH cofactor, i.e. in a site distinct from those 

occupied by the great majority of known InhA inhibitors. This compound provides an attractive 

starting template for ligand optimization aimed at discovery of new and effective compounds 

against M. tuberculosis that act by targeting InhA. 
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Introduction 

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) remains a 

major worldwide public health problem, especially in areas of high population density and low 

and middle-income countries. It is the leading cause of death by infectious disease and the ninth 

leading overall cause of death worldwide. World Health Organization (WHO) data identified 1.6 

million TB deaths and 10 million new TB cases in 2017.1 Although TB is considered treatable, 

this is threatened by the spread of drug resistant strains; it is estimated that globally there are 4.9 

million cases of patients infected with multidrug-resistant tuberculosis (MDR‐TB) strains 

resistant to isoniazid and rifampicin, the two most important anti-TB agents. In 2017 558,000 

new cases of TB were identified that were resistant to rifampicin (RR-TB), the most effective 

first-line drug, with 82% of these MDR-TB. About 8% of TB patients worldwide are estimated 

to be infected with rifampicin susceptible, isoniazid-resistant strains (HR-TB).2 

The M. tuberculosis enoyl-acyl carrier protein (ACP) reductase (M. tuberculosis InhA) is 

an attractive potential target for development of new anti-tuberculosis drugs. InhA catalyzes the 

NADH-specific reduction of 2-trans-enoyl-ACP (Figure 1A) in the elongation cycle of the fatty 

acid synthase type II (FAS II) pathway, the final step of fatty acid biosynthesis in M. 

tuberculosis.3-4 InhA is the primary target of isoniazid (INH), the second first-line drug for 

tuberculosis treatment.5-7 However, the inhibitory activity of isoniazid is reduced by mutations 

either in InhA or, more commonly, in the KatG catalase-peroxidase responsible for converting 

the INH prodrug into its active form.8-10 Thus, identifying inhibitors that directly bind to InhA 

without the requirement for activation by KatG (direct InhA inhibitors) may represent a valid 



strategy to overcome isoniazid resistance.11-12 Hence multiple academic and pharmaceutical 

efforts have led to discovery of direct InhA inhibitors.13-18 However, most of the direct InhA 

inhibitors so far identified display good InhA inhibitory activity in vitro, but poor activity against 

M. tuberculosis.13,19-21 

The interactions of InhA with substrate, cofactor and inhibitors have been extensively 

studied.22 One outcome of these investigations is the identification of the active site residue 

Tyr158 as important both to stabilizing the substrate during the catalytic reaction of M. 

tuberculosis InhA and to the binding of direct InhA inhibitors.3-4, 23 Two different conformations 

of the Tyr158 sidechain have been identified in binding of direct InhA inhibitors (Figure 1B), an 

“in” conformation associated with the ternary InhA complex (substrate/cofactor-bound form), 

and an “out” conformation resembling that observed in the binary InhA complex (cofactor-bound 

form).19-24 

In the present work, we have applied structure based virtual screening to select candidate 

InhA inhibitors from the compound library of the Specs database (www.specs.net), seeking to 

account for the mobility of Tyr158 by including both conformations of this residue in the 

screening workflow. This protocol identified two compounds that showed both inhibitory 

activity against M. tuberculosis cell growth and sub-micromolar inhibition of purified InhA in in 

vitro activity assays. A crystal structure for the complex of the most potent of these with InhA 

identified inhibitor binding in a hydrophobic active site pocket utilized in substrate binding and 

with Tyr158 in the “in” conformation. These findings demonstrate that these approaches can 

identify compounds with InhA inhibitory activity that are active against M. tuberculosis.   

 

 

 

 



 

 

Figure 1. NADH-specific reduction of 2-trans-enoyl-ACP catalyzed by InhA (A), in and out 

conformations of Tyr158 sidechain (B). Tyr158 in the “in” conformation (yellow) in the ternary 

InhA structure complexed with the C16 substrate analogue THT (trans-2-hexadecenoyl-(N-

acetylcysteamine)-thioester (yellow carbon atom) and NAD+ (gray) and Tyr158 in the “out” 

conformation (pink) in the binary InhA structure complexed with NAD+ (gray). PDB codes of 

these structures are 1BVR3 and 1ENY6, respectively. 

 

Materials and Methods 

Structure based virtual screening approach 

Structure based virtual screening was employed to search the novel InhA inhibitors from a ligand 

library of Specs database (Figure 2). Initially, all small molecules (200,000 compounds) 

contained in Specs database were docked to InhA-inTyr158 and InhA-outTyr158 receptors using 

Glide program25-27 with the standard precision (SP) mode, to reduce the time-consuming. Then, 

top 2,000 compounds ranked by Glide SP score obtained from each receptor were selected for 



further step. This is followed by the selection of compounds that showed good Glide SP scores 

for binding in both InhA-inTyr158 and InhA-outTyr158. Subsequently, the selection of 

Lipinski's rule of five28-29 and pan-assay interference compounds (PAINS)30 were employed as 

the drug-likeness filter. Then, all filtered compounds were docked to both InhA-inTyr158 and 

InhA-outTyr158 by using the extra precision (XP) mode that showed higher accuracy than the 

SP mode. Top compounds that show good Glide scoring function obtained from XP Glide 

docking (Glide XP score) in both InhA-inTyr158 and InhA-outTyr158 receptors were selected as 

the hit compound. All hit compounds were subjected for biological assays. 

Molecular docking calculations 

Molecular docking calculations were performed by the Glide program.25-27 InhA with the “in” 

and “out” conformations of Tyr158 (InhA-inTyr158 and InhA-outTyr158, respectively) were 

considered as receptors for virtual screening. InhA complexed with a diphenyl ether derivative 

(PT70) (PDB code: 2X23)20 and that complexed with a N-((3R,5S)-1-(benzofuran-3-carbonyl)-5-

(ethylcarbamoyl)pyrrolidin-3-yl)-3-ethyl-1-methyl-1H-pyrazole-5-carboxamide (KV1) (PDB 

code: 4COD)21 were selected as the representative InhA-inTyr158 and InhA-outTyr158, 

respectively. The Protein Preparation Wizard Workflow integrated in the Maestro was employed 

to prepare receptor with PROPKA at pH 7.0 for amino acid protonation assignment. Then, 

receptors with OPLS-2005 force field were minimized with the heavy atoms restrained (RMSD 

of 0.3 Å). Small compounds were prepared with LigPrep module provided in the Maestro 

program. The protonation states of compounds were generated with Epik at pH of 7.0 ± 2.0. Grid 

box was set by the default protocol and centered by the ligand. 

Plasmid expression for M. tuberculosis H37Rv InhA   

To facilitate the expression of InhA enzyme, the InhA gene was amplified by forward primer 

5’ATCATATGACAGGACTGGACGGC 3’ and reverse primer 

5’ACGCCGGATCCTAGAGCATTTGG 3’which introduced the 5’ NdeI restriction site and 3’ 

BamHI. restriction site. The slowdown PCR was used to amplify an 810 bp InhA amplicon. The 

amplicon was digested with NdeI and BamHI and cloned to pET15b. The InhA-pET15b plasmid 

that contained hexa-histidine at N-terminal (InhA-6xHis enzyme) was transformed into E. coli 

BL21(DE3) for enzyme expression 



Overexpression and purification of InhA enzyme 

Culture of BL21(DE3) cell carrying the wild type InhA was grown in 5 L of LB ampicillin (100 

µg/mL) medium at 37°C to an OD600 of 0.6, and subsequently induced with 50 µM isopropyl-β-

D-thiogalactopyranoside (IPTG). After shaking at 250 rpm for 4 hr. at 29°C, the bacterial cell 

was harvested by centrifugation at 4,000 rpm for 10 min at 4°C. The bacterial pellet was 

resuspended in 20 mM Tris-HCl, pH 7.9, containing 500 mM NaCl. The bacterial cell was lysed 

by French press at 2,000 psi and followed by centrifuging at 14,000 rpm for 30 min at 4°C to 

remove cell debris. The supernatant was applied to Ni-NTA chromatography and InhA was 

eluted by using a gradient of 250 mM imidazole. The fraction contain InhA were pooled and 

exchanged into 30 mM pierazine-1,4-bis (2-ethanesulfonic acid) (PIPES) buffer pH 6.8, 

containing 150 mM NaCl and 1 mM EDTA via PD-10 desalting columns equilibrated with 

PIPES 30 mM pH 6.8, 150 mM NaCl to remove imidazole. The elution fractions from desalting 

column were pooled and concentrated with Vivaspin centrifugal concentrator. Nanodrop was 

used to determine the concentration and SDS-PAGE was used to analyze the purity of InhA. For 

protein crystallization, InhA was thrombin cleaved to remove the N-terminal His-tag prior to 

buffer exchange into 30 mM PIPES pH 6.8, 150 mM NaCl using a PD-10 desalting column. 

Relative inhibition of InhA inhibitors 

Triclosan, NADH and DMSO were obtained from Sigma-Aldrich. Inhibitors were collected from 

the Specs database (www.specs.net). Stock solutions of the inhibitors were prepared in DMSO 

such that the final concentration of this co-solvent was constant at 1% (v/v) in the final volume 

of 100 L for all kinetic reactions. The relative inhibition for InhA of selected compounds was 

evaluated in 200 µL of 30 mM PIPES buffer, pH 6.8 containing 1 mg/ml BSA, 50 µM NADH, 

75 µM trans-2-dodecenoyl-CoA (DD-CoA) and 1 µM InhA inhibitor. The plate was shaken for 

1 min and finally the reactions were initiated by adding InhA at 15 nM final concentration. The 

mixer of InhA and NADH was preincubated at 25 °C for 5 min followed by the addition of 

compound and continually preincubated at 25 °C for 20 min. The reactions were started by 

adding 75 µM DD-CoA. The reaction was run for 10 min at 25 °C following the fluorescence 

intensity of NADH at excitation λ = 340 nm and emission λ = 420 nm. The fluorescence 

intensity of NADH of each well was recorded every 30 seconds. The relative inhibitory activ1ity 



of each compound was expressed as % relative inhibition of InhA (initial velocity of the 

reaction) with respect to control reaction without the inhibitor as calculated in equation 1. 

 

% 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 100 × (
𝐹𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑−𝐹𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐹𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐹𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
)  (1) 

 

Fcompound is the fluorescence intensity of the enzymatic activity for each compound concentration. 

Fpositive control is the fluorescence intensity of the enzyme activity in the absence of any 

compound, and Fnegative control is the fluorescence intensity of the NADH oxidation in the 

absence of the enzyme. Positive control wells contained DMSO. Negative control wells did not 

contain InhA enzyme. Triclosan was used to be the positive control. For those sample showing at 

least 60% inhibition, the follow up verification conducted in triple-triplicate in the IC50 

determination mode.   

IC50 Determination 

Briefly, IC50 values were also determined in 96-well plates with the serial 3-fold dilution with 

assay buffer that contained DMSO of each inhibitor. The final condition of DMSO in the final 

assay was 1%. The IC50 value was determined by at least 8 concentrations, with each triple-

triplicate under saturation condition. The relative inhibition of InhA was calculated as described 

above. IC50 values were calculated from plots of enzyme activity versus the log of inhibitor 

concentration. 

Anti-mycobacterial assay 

Microplate Alamar blue assay (MABA) was used to determine the minimum inhibitory 

concentration (MIC) against M. tuberculosis of hit compounds. Hit compounds were dissolved in 

DMSO (Sigma), and subsequently diluted two-fold in 100 mL of Middlebrook 7H9GC in the 96-

well plate. A mycobacterial suspension was prepared in 0.04% Tween 80 and diluted with sterile 

distilled water to a turbidity of the McFarland no. 1. The suspension was then diluted 1:50 with 

7H9GC, and 100 mL of this suspension was added to wells of microplates. After incubation at 37 

°C for approximately 7 days, 12.5 mL of 20% Tween 80 and 20 mL of Alamar blue (SeroTec 

Ltd, Oxford, UK) were added to all wells. Growth of the organisms was determined after pre-



incubation at 37 °C for 16-24 h by visual determination of a colour change from blue to pink. 

The MIC is defined as the lowest concentration that prevents the colour change. Triclosan 

(Sigma) was used as a standard drug. Clinical isolates of M. tuberculosis were obtained from a 

stock culture of Ramathibodi Hospital, Bangkok, Thailand, and they were obtained during 

routine diagnostic work (most cultures collected during 2000-2005). The ethics committee of 

Ramathibodi Hospital has approved the use of these clinical isolates for this study. 

Crystallization, data collection and structure solution 

 InhA crystals were grown under similar conditions as previously described24, 31 using 

sitting-drop vapor diffusion in 24 well plates (Hampton Research). Drops containing 1.5 µl 

protein (13 mg/ml) and 1 µl reservoir solution (17% w/v PEG 4000, 0.1 M ADA pH 6.8, 6 mM 

DMSO, 0.1 M ammonium acetate, 1% glycerol, 4.5 mM NAD+) were equilibrated against 500 µl 

of reservoir solution. Trays were incubated at 19 °C and crystals grew to their maximum size 

within 3-5 days. InhA complexed with compound 7 was obtained by soaking crystals overnight 

in 10 mM compound , 25% glycerol v/v, 17% w/v PEG 4000, 0.1 M ADA pH 6.8, 6 mM 

DMSO, 0.1 M ammonium acetate, 1% glycerol, 4.5 mM NAD+ at 4°C. X-ray data were 

collected at 100 K on beamline I03 (Diamond Light Source, United Kingdom), integrated using 

XDS32 in the Xia233 pipeline and scaled using Aimless34 in the CCP4 suite35. Crystallographic 

phases were solved using Phaser36 with PDB 4BQP24 as the starting model, and 6 molecules in 

the asymmetric unit. Early rounds of refinement were completed in Refmac537 with modelling in 

Coot38. The ligand was generated using the ProDRG server39 then modelled using restraints 

generated in eLBOW in Phenix40, and the final structure completed by iterative rounds of model 

building and refinement in Coot and Phenix. Structure validation was assisted by MolProbity41 

and Phenix. Coordinates and structure factors have been deposited in the Protein Data Bank 

(www.rcsb.org/pdb) with accession code 6R9W. 

 

Results and Discussion 

Structure based virtual screening 

 The structure based virtual screening workflow employed to identify direct InhA 

inhibitors is shown in Figure 2. After the top 2,000 compounds, ranked by Glide SP score, were 



selected, 81 compounds that showed good Glide SP scores for InhA binding to both InhA-

inTyr158 and InhA-outTyr158 conformations were collected. These were subsequently filtered 

by selection according to Lipinski's rule of five and against PAINS-like properties, yielding 65 

compounds (Table S1). The binding affinities of these compounds to both InhA-inTyr158 and 

InhA-outTyr158 were further evaluated using the more accurate Glide XP mode. These 

compounds showed Glide XP scores for InhA-inTyr158 and InhA-outTyr158 binding in the 

ranges 5.1 - 10.2 and 5.6 - 9.3 kcal/mol, respectively. For comparison, the Glide XP scores of 

two comparator compounds binding to InhA-inTyr158 (2-(o-Tolyloxy)-5-hexylphenol (PT70 ), 

PDB 2X23) and InhA-outTyr158 (N-((3R,5S)-1-(benzofuran-3-carbonyl)-5-

(ethylcarbamoyl)pyrrolidin-3-yl)-3-ethyl-1-methyl-1H-pyrazole-5-carboxamide (KV1) PDB 

4COD) were -10.5 and -9.1 kcal/mol, respectively. Accordingly, the 16 compounds with the 

highest Glide XP scores for InhA-inTyr158(< -9.0 kcal/mol) and InhA-outTyr158 (< - 6.9 

kcal/mol) were selected for biological evaluation (Table 1). The chemical structures of these 

compounds are provided (Table S2).   

 

Table 1. Glide XP docking scores and in vitro biological activities of hit compounds.   

Compounds 

Glide XP docking score 

(kcal/mol) 
Biological activity 

InhA-

inTyr158 

InhA-

outTyr158 

MIC[a] 

(µg/ml) 

Relative 

inhibition 

at 1 µM 

IC50 (µM) 

1 -10.9 -7.8 25 66 0.38±0.98   

2 -10.6 -7.0 >100 48 NT 

3 -10.5 -7.2 >100 23 NT 

4 -10.4 -8.3 >100 44 NT 

5 -10.3 -7.6 >100 58 NT 



6 -10.2 -7.3 >100 4 NT 

7 -10.2 -7.1 25 62 0.22±0.97 

8 -10.1 -8.0 >100 44 NT 

9 -9.9 -7.8 >100 21 NT 

10 -9.7 -8.5 >100 45 NT 

11 -9.6 -8.2 >100 50 NT 

12 -9.4 -7.3 >100 48 NT 

13 -9.3 -7.5 >100 57 NT 

14 -9.3 -7.7 >100 58 NT 

15 -9.2 -6.9 >100 14 NT 

16 -9.0 -7.8 >100 35 NT 

Triclosan   50 70 0.60±0.94 

PT70[b] -10.5 - - - - 

KV1[c] - -9.1 - - - 

[a]MIC value determined against M. tuberculosis H37Ra 

[b], [c] Reference compounds for Glide XP docking score in InhA-inTyr158 (PDB 2X23) and 

in InhA-outTyr158 (PDB 4COD), respectively 

Anti-tubercular activity 

With the lower experimental cost and less administration for biosafety requirement, minimal 

inhibitory concentration (MIC) values for the 16 hit compounds were evaluated against the 

avirulent strain of M. tuberculosis (H37Ra) (Table 1). Most of these compounds showed no 

activity against M. tuberculosis H37Ra with MIC values more than 100 μg/ml. Importantly, 

compounds 1 and 7 (Figure 3) showed biological activity, with MIC values of 25 μg/ml. 



Accordingly, MIC values for compounds 1 and 7 against the virulent strain of M. tuberculosis 

(H37Rv) were determined. Compound 7 demonstrated equivalent MIC values against both M. 

tuberculosis strains (25 μg/ml), whereas MIC value against M. tuberculosis H37Rv of compound 

1 is decreased by 2-fold in comparison with that against M. tuberculosis H37Ra (12.5 and 25 

µg/ml, respectively). Therefore, compounds 1 and 7 screened from our present study are 

promising lead compounds for the further development of novel anti-tuberculosis agents. 

 

 

Figure 2. Virtual screening workflow for discovery of direct InhA inhibitors. 

 



 

Figure 3. Chemical structures of two active compounds against M. tuberculosis (compound 1 

and compound 7). 

 

 

M. tuberculosis InhA inhibitory activity 

The activities of the 16 hit compounds were next evaluated in vitro against purified recombinant 

M. tuberculosis InhA. Relative InhA inhibition at a final concentration of 1 µM was evaluated 

using the known InhA inhibitor triclosan31 as a reference compound. These experiments gave 

relative inhibition values for the 16 hit compounds in the range of 4 - 66 %, compared to 70% for 

triclosan (Table 2). Although all 16 hit compounds displayed lower potency for InhA inhibition 

than triclosan, the two compounds compound 1 and compound 7 identified as active against M. 

tuberculosis H37Rv both showed relative inhibition values greater than 60%. These data suggest 

that anti-tubercular activity of these compounds is likely to arise from inhibition of InhA activity. 

These results motivated determination of IC50 values for InhA inhibition by these two 

compounds, in comparison with triclosan. The results are shown in Figure 4. Compound 1 and 

compound 7 showed IC50 values for InhA inhibition of 0.38 µM and 0.22 µM respectively, 

compared to a value for triclosan of 0.60 µM (Table 1 and Figure 2). These data demonstrate that 

both compounds are active in both whole cell and enzyme inhibition assays. 

 



 

Figure 4. IC50 curves fitting for the inhibition of InhA by triclosan (A), compound 1 (B) and 

compound 7 (C) at various concentrations. 

 

Crystallographic characterization of InhA binding to compound 7 

 Identification of active compounds motivated investigation of their modes of binding to 

InhA by X-ray crystallography. Purified recombinant InhA was crystallized in the presence of 

NADH in the previously reported C2 crystal6 form by hanging-drop vapor diffusion, and crystals 

exposed to inhibitors before freezing for diffraction data collection. Multiple diffraction 

experiments on soaked crystals yielded a single dataset (diffracting to a resolution of 1.75 Å 

(Table 2)) which, after molecular replacement, contained positive difference (Fo – Fc) electron 

density, consistent with the structure of compound 7, in maps for one of the six InhA molecules 

present in the crystallographic asymmetric unit. After refinement the real-space correlation 



coefficient (RSCC) value (calculated by Phenix)40 for bound ligand was 0.897, indicating 

acceptable fit to the experimental electron density.42 The average B-factor for the bound inhibitor 

was 31.66 Å2, comparing favorably with a value of 33.64 Å2 for the cofactor (most likely in the 

NAD+ form) averaged across the 6 InhA molecules. Binding of compound 7 to the InhA active 

site is shown in Figure 5.  

 Compound 7 is bound in the InhA active site in an extended hydrophobic pocket, with the 

bicyclic indane contacting residues Phe149, Met155, Pro156, Ala157, Ile215 and Leu218; and 

the benzimidazole ring residues Met103, Ala198, Met199, Ile202 and Leu207. The inhibitor 

hydroxyl group makes a water-mediated hydrogen bond to the backbone carbonyl of Ala211. 

Tyr158 is clearly resolved as being in the “in” orientation; other molecules in the asymmetric 

unit feature Tyr158 in “in” (molecules B and D), “out” (molecules C and F) and dual (molecule 

E) conformations, indicating that Tyr158 can sample different rotamers in this crystal form. 

However, our observation of inhibitor bound only to a molecule with Tyr158 in the “in” 

conformation, coupled with the results of superpositions that indicate a clash between the Tyr158 

“out” conformation and the inhibitor indane, strongly support the contention that compound 7 

binds preferentially to InhA in the inTyr158 conformation. Surprisingly, the inhibitor binds some 

distance away from the NAD+ cofactor, with the closest approach being made by the 

benzimidazole group to the NAD+ nicotinamide ring (6.97 Å) and diphosphate (6.58 Å). 

Interestingly, this mode of binding also differs from those obtained from Glide XP docking of 

compound 7 against either of the two conformations of InhA (InhA-inTyr158 and InhA-

outTyr158). However, there is some partial overlap of the indane binding site with that of the 

conformation docked against InhA-inTyr158, and between the indane of the conformation 

docked against InhA-outTyr158 and the crystallographically observed benzimidazole binding 

site (Figure S1). 

InhA has been the subject of extensive efforts aimed at discovery of direct inhibitors, 

with in consequence numerous crystal structures available for complexes of the enzyme with a 

range of ligands (for review see Chollet et al).22 We therefore compared our inhibitor-bound 

structure with those of other InhA complexes, with the aim of identifying the extent to which the 

observed mode of binding of compound 7 relates to those described for other inhibitors. These 

comparisons identify the binding mode as most closely resembling that of the C16 substrate 



analogue THT (trans-2-hexadecenoyl-(N-acetylcysteamine)-thioester)) which adopts a U-shaped 

conformation with the cysteamine/thioester head group contacting the NADH cofactor and the 

distal end of the aliphatic tail making hydrophobic interactions with multiple residues (Met103, 

Phe149, Met161, Ala198, Met199, Ala201, Ile202, Leu207, Ile215, and Leu218) of which the 

majority also participate in compound 7 binding (PDB 1BVR).3 Of inhibitor complex structures 

the closest similarity is observed with triclosan binding to its second site (as described in PDB 

1P45 in which two triclosan binding sites are observed).43 However, triclosan and related diaryl 

ether inhibitors usually bind close to the NAD(H) cofactor, in the binding site utilized by the 

THT cysteamine group, and this second site is not normally occupied. Importantly, as well as (in 

common with the majority of InhA complexes) featuring Tyr158 in the “in” conformation, these 

structures also feature the H6 alpha helix (residues 196 – 206) in an open, but ordered, 

conformation. This region of the protein adopts a variety of conformations, and is in some cases 

disordered, in the various InhA structures, and is implicated in substrate binding. These 

observations lead us to conclude that binding of compound 7 to InhA replicates that of substrate. 

Of the multiple other InhA: inhibitor complex structures available the great majority 

involve inhibitor interactions with cofactor, and the mode of binding observed here is not 

replicated. There is some partial overlap of compound 7 binding with elements of the binding 

sites of other inhibitor classes, for example of the indane with the aliphatic tail of the alkylated 

diaryl ether 8PS (PDB 2B37)31 , the fluoroenyl group of the aryl carboxamide GENZ10850 

(PDB 1P44)43, or the (4, 4-dimethyl)cyclohexyl group of the 4-hydroxy-2-pyridones NITD-

564/916 (PDB 4R9R, 4R9S)18; or the benzimidazole with the natural product pyridomycin (chain 

D of PDB 4BII)44 or the 2-chloro-6-fluoro-benzyl group of the thiadiazole GSK625 (PDB 

5JFO)16 (Figure S2). However, none of these compounds replicate more than a small fraction of 

the interactions observed here. Equally, the binding site occupied by compound 7 does not 

overlap with those of cofactor-independent inhibitors such as the diazaborine AN1285515 (Figure 

S2). Taken together, these comparisons indicate that compound 7 adopts an uncommon, 

substrate-like binding mode that (with the sole exception of the second triclosan site) is not 

observed in other InhA inhibitors. Similarly, whilst a series of benzimidazole compounds have 

been reported to inhibit the equivalent enoyl ACP reductase FabI from Francisella tularensis, 

these bind with their benzimidazole moiety close to the cofactor in a binding site distinct from 

that of compound 7 (Figure S3)45.  



Table 2. Crystallographic data collection and refinement statistics. 

Data collection[a]  

Beamline DLS I03 

Space group C2 

Molecules/ASU 6 

Cell dimensions    

    a, b, c (Å) 100.90, 81.60, 189.42 

    α, β, γ  ()  90.0, 95.52, 90.0 

Wavelength(s) (Å) 0.97624 

Resolution (Å)* 43.32 – 1.75 (1.78 – 1.75) 

Rpim 0.046 (0.389) 

CC1/2 0.997 (0.765) 

I / σ(I) 10.1 (2.3) 

Completeness (%) 99.3 (98.4) 

Redundancy 6.9 (6.8) 

  

Refinement  

Resolution (Å) 43.317 – 1.75 

No. reflections 152,796 

R
work

 / R
free

 0.1871 / 0.2269 

No. non-H atoms  

    Protein 11795 

    Solvent 1031 

    Inhibitor 23 

    NAD 264 

B-factors  

    Protein 39.87 

    Solvent 38.06 

    Inhibitor 31.66 

    NAD 33.64 

R.m.s. deviations  

    Bond lengths (Å) 0.017 

    Bond angles () 1.480 

Ramachandran (%)  

    Outliers 0.00 



    Favoured 95.94 

PDB code 6R9W 

[a] Values in parentheses are for highest-resolution shell. 

 

 

Figure 5. Structure of compound 7 bound to InhA and comparison to other InhA complexes. 

Compound 7 (cyan sticks) binds in the active site of InhA but does not interact with NAD+ 

(yellow sticks). (A) compound 7 defined by Fo-Fc electron density (green mesh, contoured at 3σ) 

calculated after removal of ligand. (B) Binding of compound 7 is stabilised by close interaction 

with nine hydrophobic residues (labelled, blue sticks). (C) Comparison of compound 7 binding 

with the two previously determined binding sites for triclosan (PDB 1P45, orange sticks). (D) 

Comparison of compound 7 binding with a C16 fatty acyl substrate (PDB 1BVR, pink sticks). 

 



Conclusions 

The work presented here demonstrates that structure based virtual screening supported by 

subsequent biological assays can identify novel InhA inhibitors with potential to act as anti-

tuberculosis agents. The most active compound, compound 7, shows encouraging inhibitory 

activity towards InhA, with an IC50 value of 0.22 µM that compares favorably with that of the 

widely used model compound triclosan (IC50 of 0.60 µM). Importantly, this compound also 

shows activity against M. tuberculosis H37Rv in antibacterial assays (MIC of 25 µg/ml) 

indicating some ability to penetrate mycobacterial cells. A crystal structure of the ternary 

complex of compound 7 bound to InhA in the presence of cofactor (NAD+) identifies a mode of 

binding distinct from that of most other InhA inhibitors, replicating binding of the substrate acyl 

chain at a site distant from the catalytic center and NAD+ binding site. These data justify further 

exploration and optimization of the lead compound as a potential anti-tuberculosis agent. 

Supporting Information Available:  

 Table S1. Glide XP scores of 65 compounds docked into InhA-inTyr158 and InhA-

outTyr158 

 Table S2. Chemical structures of 16 hit compounds 

 Figure S1. Orientations of compound 7 in the InhA binding site obtained from X-ray 

crystal structure and Glide XP docking against InhA-inTyr158 and InhA-outTyr158. 

 Figure S2. Comparisons of the binding site of InhA inhibitors with compound 7. Views 

from the active site of the InhA:7 crystal structure, with previous structurally characterized 

inhibitors overlaid to compare their binding modes with 7. For clarity, only the protein backbone 

and NAD of InhA:7 are shown. (A) GSK-625 (PDB ID 5JFO)16; (B) GSK-SB713 (PDB ID 

4QXM)17; (C) NITD-564/916 (PDB IDs 4R9R/4R9S)18; (D) AN12855 (which binds 

independently of NAD, PDB ID 5VRL). 

 Figure S3. Comparison of compound 7 binding to InhA with a benimidazole inhibitor of 

the enoyl ACP reductase (FabI) from Francisella tularensis. The crystal structure of the F. 

tularensis FabI inhibitor complex (FtuFabI:1, PDB ID 3UIC) is superposed with the InhA:7 

structure (RMSD 1.46 Å over 247 Cα). View as in Figure S2. 
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