210 research outputs found

    Learning About Culture: Overarching Evaluators’ Report

    Get PDF

    On the observability of T Tauri accretion shocks in the X-ray band

    Full text link
    Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We explore the space of relevant parameters and synthesize from the model results the X-ray emission in the [0.5-8.0] keV band and in the resonance lines of O VII (21.60 Ang) and Ne IX (13.45 Ang), taking into account the absorption from the chromosphere. Results. The accretion stream properties influence the temperature and the stand-off height of the shocked slab and its sinking in the chromosphere, determining the observability of the shocked plasma. Our model predicts that X-ray observations preferentially detect emission from low density and high velocity shocked accretion streams due to the large absorption of dense post-shock plasma. In all the cases examined, the post-shock zone exhibits quasi-periodic oscillations due to thermal instabilities, but in the case of inhomogeneous streams and beta<<1, the shock oscillations are hardly detectable. Conclusions. We suggest that, if accretion streams are inhomogeneous, the selection effect introduced by the absorption on observable plasma components may explain the discrepancy between the accretion rate measured by optical and X-ray data as well as the different densities measured using different He-like triplets in the X-ray band.Comment: 12 pages, 7 figures. Accepted for publication on A&

    Challenging claims in the study of migratory birds and climate change

    Get PDF
    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (‘consensus view’) for a claim increased and between-researcher variability in support (‘expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies

    Some formal results for the valence bond basis

    Full text link
    In a system with an even number of SU(2) spins, there is an overcomplete set of states--consisting of all possible pairings of the spins into valence bonds--that spans the S=0 Hilbert subspace. Operator expectation values in this basis are related to the properties of the closed loops that are formed by the overlap of valence bond states. We construct a generating function for spin correlation functions of arbitrary order and show that all nonvanishing contributions arise from configurations that are topologically irreducible. We derive explicit formulas for the correlation functions at second, fourth, and sixth order. We then extend the valence bond basis to include triplet bonds and discuss how to compute properties that are related to operators acting outside the singlet sector. These results are relevant to analytical calculations and to numerical valence bond simulations using quantum Monte Carlo, variational wavefunctions, or exact diagonalization.Comment: 22 pages, 14 figure

    PCBs and dioxins/furans in attic dust collected near former PCB production and secondary copper facilities in Sauget, IL

    Get PDF
    AbstractSamples of settled attic dust from fourteen buildings located within two miles of the Solutia W.G. Krummrich and Cerro Flow Products facilities in Sauget, Illinois were analyzed for PCBs and dioxins/furans using HRGC/HRMS. The facilities released vast quantities of PCBs and dioxins/furans into the environment over many decades. The concentrations and homologues present in the samples of attic dust and in samples of soil collected by U.S. EPA demonstrate atmospheric transport of PCBs and dioxins/furans from these manufacturing sites and local dumps contaminated with these pollutants. The results demonstrate that attic dust is a useful metric for assessing historical exposure to atmospheric emissions

    The History and Future of the Local and Loop I Bubbles

    Get PDF
    The Local and Loop I superbubbles are the closest and best investigated supernova (SN) generated bubbles and serve as test laboratories for observations and theories of the interstellar medium. Since the morphology and dynamical evolution of bubbles depend on the ambient density and pressure distributions, a realistic modelling of the galactic environment is crucial for a detailed comparison with observations. We have performed 3D high resolution (down to 1.25 pc on a kpc-scale grid) hydrodynamic simulations of the Local Bubble (LB) and the neighbouring Loop I (L1) superbubble in a realistically evolving inhomogeneous background ISM, disturbed already by SN explosions at the Galactic rate for 200 Myr before the LB and L1 are generated. The LB is the result of 19 SNe occurring in a moving group, which passed through the present day local HI cavity. We can reproduce (i) the OVI column density in absorption within the LB in agreement with COPERNICUS and recent FUSE observations, giving N(OVI) <2 10^{13} cm^-2 and N(OVI)<7 10^{12} cm^-2, respectively, (ii) the observed sizes of the Local and Loop I superbubbles, (iii) the interaction shell between LB and L1, discovered with ROSAT, (iv) constrain the age of the LB to be 14.5+0.7/-0.4 Myr, (v) predict the merging of the two bubbles in about 3 Myr, when the interaction shell starts to fragment, (vi) the generation of blobs like the Local Cloud as a consequence of a dynamical instability. We find that evolving superbubbles strongly deviate from idealised self-similar solutions due to ambient pressure and density gradients, as well as due to turbulent mixing and mass loading. Hence, at later times the hot interior can break through the surrounding shell, which may also help to explain the puzzling energy "deficit" observed in LMC bubbles.Comment: Accepted for publication in Astronomy and Astrophysics Letters. The paper contains 5 pages and 11 figures. Fig. 1a replaced by correct figur

    A new radiative cooling curve based on an up to date plasma emission code

    Full text link
    This work presents a new plasma cooling curve that is calculated using the SPEX package. We compare our cooling rates to those in previous works, and implement the new cooling function in the grid-adaptive framework `AMRVAC'. Contributions to the cooling rate by the individual elements are given, to allow for the creation of cooling curves tailored to specific abundance requirements. In some situations, it is important to be able to include radiative losses in the hydrodynamics. The enhanced compression ratio can trigger instabilities (such as the Vishniac thin-shell instability) that would otherwise be absent. For gas with temperatures below 10,000 K, the cooling time becomes very long and does not affect the gas on the timescales that are generally of interest for hydrodynamical simulations of circumstellar plasmas. However, above this temperature, a significant fraction of the elements is ionised, and the cooling rate increases by a factor 1000 relative to lower temperature plasmas.Comment: 11 pages, 6 figures. Typos fixed to match version on A&A 'forthcoming' website. Tables in text format online available at http://www.phys.uu.nl/~schure/coolin

    Mass distribution in the most X-ray-luminous galaxy cluster RX J1347.5-1145 studied with XMM-Newton

    Get PDF
    We report on the analysis of XMM-Newton observations of RX J1347.5-1145 (z=0.451), the most X-ray-luminous galaxy cluster. We present a detailed total and gas mass determination up to large distances (~1.7 Mpc), study the scaling properties of the cluster, and explore the role of AGN heating in the cluster cool core. By means of spatially resolved spectroscopy we derive density, temperature, entropy, and cooling time profiles of the intra-cluster medium. We compute the total mass profile of the cluster in the assumption of hydrostatic equilibrium. If the disturbed south-east region of the cluster is excluded from the analysis, our results on shape, normalization, scaling properties of density, temperature, entropy, and cooling time profiles are fully consistent with those of relaxed, cool core clusters. We compare our total and gas mass estimates with previous X-ray, lensing, dynamical, and SZ studies. We find good agreement with other X-ray results, dynamical mass measurements, weak lensing masses and SZ results. We confirm a discrepancy of a factor ~2 between strong lensing and X-ray mass determinations and find a gross mismatch between our total mass estimate and the mass reconstructed through the combination of both strong and weak lensing. We explore the effervescent heating scenario in the core of RX J1347.5-1145 and find support to the picture that AGN outflows and heat conduction are able to quenching radiative cooling.Comment: 12 pages, 6 figures, accepted for publication in A&

    Thermal radiation processes

    Get PDF
    We discuss the different physical processes that are important to understand the thermal X-ray emission and absorption spectra of the diffuse gas in clusters of galaxies and the warm-hot intergalactic medium. The ionisation balance, line and continuum emission and absorption properties are reviewed and several practical examples are given that illustrate the most important diagnostic features in the X-ray spectra.Comment: 37 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 9; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    • 

    corecore