Context. High resolution X-ray observations of classical T Tauri stars
(CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13
cm^-3). This emission has been attributed to shock-heated accreting material
impacting onto the stellar surface. Aims. We investigate the observability of
the shock-heated accreting material in the X-ray band as a function of the
accretion stream properties (velocity, density, and metal abundance) in the
case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D
hydrodynamic model describing the impact of an accretion stream onto the
chromosphere, including the effects of radiative cooling, gravity and thermal
conduction. We explore the space of relevant parameters and synthesize from the
model results the X-ray emission in the [0.5-8.0] keV band and in the resonance
lines of O VII (21.60 Ang) and Ne IX (13.45 Ang), taking into account the
absorption from the chromosphere. Results. The accretion stream properties
influence the temperature and the stand-off height of the shocked slab and its
sinking in the chromosphere, determining the observability of the shocked
plasma. Our model predicts that X-ray observations preferentially detect
emission from low density and high velocity shocked accretion streams due to
the large absorption of dense post-shock plasma. In all the cases examined, the
post-shock zone exhibits quasi-periodic oscillations due to thermal
instabilities, but in the case of inhomogeneous streams and beta<<1, the shock
oscillations are hardly detectable. Conclusions. We suggest that, if accretion
streams are inhomogeneous, the selection effect introduced by the absorption on
observable plasma components may explain the discrepancy between the accretion
rate measured by optical and X-ray data as well as the different densities
measured using different He-like triplets in the X-ray band.Comment: 12 pages, 7 figures. Accepted for publication on A&