309 research outputs found

    FOXP3+CD25− Tumor Cells with Regulatory Function in Sézary Syndrome

    Get PDF
    Cutaneous T-cell lymphoma (CTCL) has been suggested by in vitro experiments to represent a malignant CD4+ T-cell proliferation with a regulatory T-cell (Treg) phenotype (CD4+CD25+FOXP3+). We investigated percentages of FOXP3+ and CD25+ cells in the blood of 15 Sézary, 14 mycosis fungoides (MF), and 10 psoriasis (Pso) patients and 20 normal healthy donors (NHDs). We found similar numbers of FOXP3+ cells in MF (10.4% of blood CD4+ cells) and Pso (11.1%) patients and NHDs (9.8%). In 8 of 15 (53%) Sézary patients, significantly reduced percentages of FOXP3+ cells were seen in blood (2.9%) and skin (10.4%). Interestingly, 6 of 15 (40%) Sézary patients showed significantly increased percentages of FOXP3+ cells (39.7% (blood), 20.3% (skin)); however, these cells did not express CD25. In these latter patients, clone-specific TCR-Vβ-chain antibodies were used to demonstrate that these FOXP3+CD25− cells were monoclonal CTCL tumor cells. FOXP3+CD25− CTCL tumor cells showed a highly demethylated status of the foxp3 gene locus similar to Treg cells, and they were functionally able to suppress IL-2 mRNA induction in TCR-stimulated conventional T cells. Thus, FOXP3+CD25− CTCL tumor cells with functional features of Treg cells define a subgroup of Sézary patients who might carry a different prognosis and might require differential treatment

    Ácidos grasos como marcadores de las relaciones tróficas entre el sestón, el zooplancton crustáceo y el sifonóforo Nanomia cara en Georges Basin y el cañón Oceanographer (NO Atlántico)

    Get PDF
    [EN] Fatty acid concentrations expressed as percentages of total fatty acid pools in seston, stage V copepodites of Calanus finmarchicus, adults of the euphausiid Meganyctiphanes norvegica, and the physonect siphonophore Nanomia cara were used to elucidate trophic links in Georges Basin and Oceanographer Canyon in September 2003. Seston at both locations was refractory and comprised mainly of saturated fatty acids. Phytoplankton did not contribute significantly to the fatty acid composition of seston or higher trophic levels. Only four fatty acids, i.e. 14:0, 16:0, 16:1 (n–7) and 18:1 (n–7), were transferred from seston to C. finmarchicus or M. norvegica, which suggested weak trophic interactions. Fatty acids transferred from the two species of crustaceans to N. cara included the same four fatty acids, along with three polyunsaturated fatty acids found in relatively high concentrations in both crustaceans, i.e. 20:3 (n–6), 20:5 (n–3) and 22:6 (n–3). In addition, 18:1 (n–9), which occurred in relatively high concentrations only in M. norvegica, and 18:0 and 18:2 (n–6), which were found in low concentrations in both crustaceans, also appeared to be transferred to N. cara. Overall, fatty acid trophic markers proved useful for identifying trophic links to N. cara[ES] En este estudio se utilizaron las concentraciones de ácidos grasos (expresadas como porcentajes) para identificar posibles relaciones tróficas entre el seston, el estadio V (copepoditos) de Calanus finmarchicus, los adultos del eufáusido Meganyctiphanes norvegica, y el sifonóforo fisonecto Nanomia cara en Georges Basin y el cañón submarino Oceanographer durante Septiembre de 2003. En ambos lugares el seston era muy refractario y compuesto básicamente por ácidos grasos saturados. El fitoplancton no contribuyó de forma significativa a la composición de ácidos grasos del seston o de niveles tróficos superiores. Sólo cuatro ácidos grasos [14:0, 16:0, 16:1 (n–7) y 18:1 (n–7)] se transfirieron potencialmente del seston a C. finmarchicus o M. norvegica, lo que sugiere una débil conexión trófica entre estos eslabones de la cadena. Los ácidos grasos transferidos de las dos especies de zooplancton crustáceo a N. cara incluyen los mismos descritos más arriba y otros tres ácidos grasos poliinsaturados [20:3 (n–6), 20:5 (n–3) y 22:6 (n–3)] encontrados en concentraciones relativamente elevadas en ambos crustáceos. Además, tanto el 18:1 (n–9) (encontrado en elevadas concentraciones en M. norvegica) y los 18:0 y 18:2 (n–6) (encontrados en bajas concentraciones en ambas especies de crustáceos) se transfieren a N. cara. Los ácidos grasos demuestran ser una herramienta útil para identificar conexiones tróficas en N. caraA grant to MJY from the National Science Foundation (NSF-0002493), the European Project EUROGEL, and USDA CRIS Project FLA-FAS-03978 supported this workPeer reviewe

    Direct Infection of Primary Salivary Gland Epithelial Cells by Human T Lymphotropic Virus Type I in Patients With Sjogren\u27s Syndrome

    Get PDF
    Objective To investigate whether human T lymphotropic virus type I (HTLV-I) directly infects salivary gland epithelial cells (SGECs) and induces the niche of the salivary glands in patients with Sjogren\u27s syndrome (SS). Methods SGECs were cultured with the HTLV-I-producing CD4+ T cell line HCT-5 or with Jurkat cells. Antibody arrays, immunofluorescence analysis, and enzyme-linked immunosorbent assay (ELISA) were used to determine the profiles of inflammation-related molecules, and the profiles of apoptosis-related molecules were determined by antibody array and immunofluorescence analysis. The presence of HTLV-I-related molecules was assessed by immunofluorescence analysis and in situ polymerase chain reaction. Apoptosis of SGECs was evaluated by TUNEL staining. Results Among the SGECs, 7.8 ± 1.3% (mean ± SD) were positive for HTLV-I-related proteins after 96-hour coculture with HCT-5 cells. Nuclear NF-κB p65 was also detected in 10% of the SGECs. The presence of HTLV-I proviral DNA in SGECs after coculture with HCT-5 cells was detected by in situ polymerase chain reaction. After coculture of SGECs with HCT-5, the expression of cytokines and chemokines, including soluble intercellular adhesion molecule 1, RANTES, and interferon γ-induced protein 10 kd (IP-10/CXCL10) was increased in a time-dependent manner. The expression of proapoptotic molecules (e.g., cytochrome c and Fas) and antiapoptotic molecules (e.g., Bcl-2, Heme oxygenase 2, and Hsp27) was increased in the SGECs cocultured with HCT-5, showing that apoptosis of SGECs was not detected after coculture with HCT-5 or Jurkat cells. Conclusion HTLV-I is thought to infect SGECs and alter their cellular functions. These changes may induce the niche of SS and contribute to the development of SS in anti-HTLV-I antibody-positive individuals

    Negative Feedback Regulation of T Cells via Interleukin-2 and FOXP3 Reciprocity

    Get PDF
    As interleukin-2 (IL2) is central to the clonal expansion of antigen-selected T cells, we investigated the relationship between IL2 and the negative regulatory transcription factor FOXP3. We found IL2 to be responsible for T cell antigen receptor (TCR)-activated FOXP3 expression by both CD4+ and CD8+ human T cells, and as anticipated, FOXP3 expression restricted TCR-stimulated IL2 expression. However, no evidence could be found that FOXP3+ cells actively suppress IL2 expression by FOXP3- cells. These data are consistent with an IL2/FOXP3-dependent negative feedback loop that normally regulates the T cell immune response. It follows that a defect in this negative feedback loop as a result of a deficiency of either IL2 or FOXP3 will lead to a hyperproliferative autoimmune syndrome, without the necessity of invoking an active suppressive function for FOXP3+ T cells

    Transplantation tolerance: lessons from experimental rodent models

    Get PDF
    Immunological tolerance or functional unresponsiveness to a transplant is arguably the only approach that is likely to provide long-term graft survival without the problems associated with life-long global immunosuppression. Over the past 50 years, rodent models have become an invaluable tool for elucidating the mechanisms of tolerance to alloantigens. Importantly, rodent models can be adapted to ensure that they reflect more accurately the immune status of human transplant recipients. More recently, the development of genetically modified mice has enabled specific insights into the cellular and molecular mechanisms that play a key role in both the induction and maintenance of tolerance to be obtained and more complex questions to be addressed. This review highlights strategies designed to induce alloantigen specific immunological unresponsiveness leading to transplantation tolerance that have been developed through the use of experimental models

    Treg and CTLA-4: Two intertwining pathways to immune tolerance.

    Get PDF
    Both the CTLA-4 pathway and regulatory T cells (Treg) are essential for the control of immune homeostasis. Their therapeutic relevance is highlighted by the increasing use of anti-CTLA-4 antibody in tumor therapy and the development of Treg cell transfer strategies for use in autoimmunity and transplantation settings. The CTLA-4 pathway first came to the attention of the immunological community in 1995 with the discovery that mice deficient in Ctla-4 suffered a fatal lymphoproliferative syndrome. Eight years later, mice lacking the critical Treg transcription factor Foxp3 were shown to exhibit a remarkably similar phenotype. Much of the debate since has centered on the question of whether Treg suppressive function requires CTLA-4. The finding that it does in some settings but not in others has provoked controversy and inevitable polarization of opinion. In this article, I suggest that CTLA-4 and Treg represent complementary and largely overlapping mechanisms of immune tolerance. I argue that Treg commonly use CTLA-4 to effect suppression, however CTLA-4 can also function in the non-Treg compartment while Treg can invoke CTLA-4-independent mechanisms of suppression. The notion that Foxp3 and CTLA-4 direct independent programs of immune regulation, which in practice overlap to a significant extent, will hopefully help move us towards a better appreciation of the underlying biology and therapeutic significance of these pathways

    Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

    Get PDF
    Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naïve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion

    Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment?

    Get PDF
    BACKGROUND: Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a recently discovered subset of T-lymphocytes with potent suppressive activity and pivotal roles in curtailing destructive immune responses and preventing autoimmune disease. METHODS: A systematic review was undertaken of the published literature on Treg cells in the ovary, testes, uterus and gestational tissues in pregnancy, and their link with infertility, miscarriage and pathologies of pregnancy. An overview of current knowledge on the generation, activation and modes of action of Treg cells in controlling immune responses is provided, and strategies for manipulating regulatory T-cells for potential applications in reproductive medicine are discussed. RESULTS: Studies in mouse models show that Treg cells are essential for maternal tolerance of the conceptus, and that expansion of the Treg cell pool through antigen-specific and antigen non-specific pathways allows their suppressive actions to be exerted in the critical peri-implantation phase of pregnancy. In women, Treg cells accumulate in the decidua and are elevated in maternal blood from early in the first trimester. Inadequate numbers of Treg cells or their functional deficiency are linked with infertility, miscarriage and pre-eclampsia. CONCLUSIONS: The potency and wide-ranging involvement of Treg cells in immune homeostasis and disease pathology indicates the considerable potential of these cells as therapeutic agents, raising the prospect of their utility in novel treatments for reproductive pathologies.Leigh R. Guerin, Jelmer R. Prins and Sarah A. Robertso
    corecore