190 research outputs found

    Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation

    Get PDF
    Linker histone H1 plays an important role in chromatin folding. Phosphorylation by cyclin-dependent kinases is the main post-translational modification of histone H1. We studied the effects of phosphorylation on the secondary structure of the DNA-bound H1 carboxy-terminal domain (CTD), which contains most of the phosphorylation sites of the molecule. The effects of phosphorylation on the secondary structure of the DNA-bound CTD were site-specific and depended on the number of phosphate groups. Full phosphorylation significantly increased the proportion of β-structure and decreased that of α-helix. Partial phosphorylation increased the amount of undefined structure and decreased that of α-helix without a significant increase in β-structure. Phosphorylation had a moderate effect on the affinity of the CTD for the DNA, which was proportional to the number of phosphate groups. Partial phosphorylation drastically reduced the aggregation of DNA fragments by the CTD, but full phosphorylation restored to a large extent the aggregation capacity of the unphosphorylated domain. These results support the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of H1 partial phosphorylation in interphase chromatin relaxation. More generally, our results suggest that the effects of phosphorylation are mediated by specific structural changes and are not simply a consequence of the net charge

    Severity-Related Changes of Bronchial Microbiome in Chronic Obstructive Pulmonary Disease

    Get PDF
    Bronchial colonization by potentially pathogenic microorganisms (PPMs) is often demonstrated in chronic obstructive pulmonary disease (COPD), but culture-based techniques identify only a portion of the bacteria in mucosal surfaces. The aim of the study was to determine changes in the bronchial microbiome of COPD associated with the severity of the disease. The bronchial microbiome of COPD patients was analyzed by 16S rRNA gene amplification and pyrosequencing in sputum samples obtained during stable disease. Seventeen COPD patients were studied (forced expiratory volume in the first second expressed as a percentage of the forced vital capacity [FEV1%] median, 35.0%; interquartile range [IQR], 31.5 to 52.0), providing a mean of 4,493 (standard deviation [SD], 2,598) sequences corresponding to 47 operational taxonomic units (OTUs) (SD, 17) at a 97% identity level. Patients were dichotomized according to their lung function as moderate to severe when their FEV1% values were over the median and as advanced when FEV1% values were lower. The most prevalent phyla in sputum were Proteobacteria (44%) and Firmicutes (16%), followed by Actinobacteria (13%). A greater microbial diversity was found in patients with moderate-to-severe disease, and alpha diversity showed a statistically significant decrease in patients with advanced disease when assessed by Shannon (ρ = 0.528; P = 0.029, Spearman correlation coefficient) and Chao1 (ρ = 0.53; P = 0.028, Spearman correlation coefficient) alpha-diversity indexes. The higher severity that characterizes advanced COPD is paralleled by a decrease in the diversity of the bronchial microbiome, with a loss of part of the resident flora that is replaced by a more restricted microbiota that includes PPMs

    Species and tissue-specificity of prokinetic, laxative and spasmodic effects of Fumaria parviflora

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Fumaria parviflora </it>Linn. (<it>Fumariaceae</it>), is a small branched annual herb found in many parts of the world including Saudi Arabia and Pakistan. This study was designed to provide pharmacological basis for the medicinal use of <it>Fumaria parviflora </it>in gut motility disorders.</p> <p>Methods</p> <p>The <it>in-vivo </it>prokinetic and laxative assays were conducted in mice. Isolated intestinal preparations (ileum and jejunum) from different animal species (mouse, guinea-pig and rabbit) were separately suspended in tissue baths containing Tyrode's solution bubbled with carbogen and maintained at 37°C. The spasmogenic responses were recorded using isotonic transducers coupled with PowerLab data acquisition system.</p> <p>Results</p> <p>The aqueous-methanol extract of <it>Fumaria parviflora </it>(Fp.Cr), which tested positive for the presence of alkaloids, saponins, tannins and anthraquinones showed partially atropine-sensitive prokinetic and laxative activities in the <it>in-vivo </it>in mice at 30 and 100 mg/kg. In the <it>in-vitro </it>studies, Fp.Cr (0.01-1 mg/ml) caused a concentration-dependent atropine-sensitive stimulatory effect both in mouse tissues (jejunum and ileum), and rabbit jejunum but had no effect in rabbit ileum. In guinea-pig tissues (ileum and jejunum), the crude extract showed a concentration-dependent stimulatory effect with higher efficacy in ileum and the effect was partially blocked by atropine, indicating the involvement of more than one types of gut-stimulant components (atropine-sensitive and insensitive). This could be a plausible reason for the greater efficacy of Fp.Cr in gut preparations of guinea-pig than in rabbit or mouse.</p> <p>Conclusions</p> <p>This study shows the prokinetic, laxative and spasmodic effects of the plant extract partially mediated through cholinergic pathways with species and tissue-selectivity, and provides a sound rationale for the medicinal use of <it>Fumaria parviflora </it>in gut motility disorders such as, indigestion and constipation. This study also suggests using different species to know better picture of pharmacological profile of the test material.</p

    Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome

    Get PDF
    Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed
    corecore