276 research outputs found

    Diffuse Hard X-ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    Full text link
    [Abdriged] The origin of the diffuse hard X-ray (2 - 10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10 - 100 TeV electrons and positrons (e+/-) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e+/- at these energies: (1) primary electrons directly accelerated by supernova remnants; (2) pionic secondary e+/- created by inelastic collisions between CR protons and gas nuclei in the dense ISMs of starbursts; (3) pair e+/- produced between the interactions between 10 - 100 TeV gamma-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic Center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power law injection spectrum for electrons and protons. We compare these models to extant radio and GeV and TeV gamma-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and Inverse Compton (IC) luminosities of these starbursts. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron contributes 2 - 20% of their unresolved, diffuse hard X-ray emission. Inverse Compton emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic Center to 10% in Arp 220's nuclei. We also model generic starbursts, including submillimeter galaxies, in the context of the FIR--X-ray relation, finding that up to 2% in the densest starbursts with our fiducial assumptions. Neutrino and TeV gamma-ray data can further constrain the synchrotron X-ray emission of starbursts. Our models do not constrain hard synchrotron X-ray emission from any additional hard components of primary e+/- from sources like pulsars in starbursts.Comment: Accepted by ApJ; 31 pages, emulateapj forma

    Polymer-based paclitaxel-eluting stents reduce in-stent neointimal tissue proliferation A serial volumetric intravascular ultrasound analysis from the TAXUS-IV trial

    Get PDF
    ObjectivesThe aim of this study was to use serial volumetric intravascular ultrasound (IVUS) to evaluate the effects of polymer-based, paclitaxel-eluting stents on in-stent neointima formation and late incomplete stent apposition.BackgroundThe TAXUS-IV trial demonstrated that the slow-release, polymer-based, paclitaxel-eluting stent reduces angiographic restenosis and the need for repeat revascularization procedures. Serial IVUS studies reveal details of the pattern of vascular responses provoked by stent implantation that provide insight into device safety and efficacy.MethodsIn the TAXUS-IV trial, patients were randomized to the slow-release, polymer-based, paclitaxel-eluting TAXUS stent or a bare-metal EXPRESS stent (Boston Scientific Corp., Natick, Massachusetts). As part of a formal substudy, complete volumetric IVUS data were available in 170 patients, including 88 TAXUS patients and 82 controls, at implantation and at nine-month follow-up.ResultsNo baseline differences were present in the clinical characteristics or IVUS parameters between the control and TAXUS groups. At nine-month follow-up, IVUS lumen volumes were larger in the TAXUS group (123 ± 43 mm3vs. 104 ± 44 mm3, p = 0.005), due to a reduction in neointimal volume (18 ± 18 mm3vs. 41 ± 23 mm3, p < 0.001). Millimeter-by-millimeter analysis within the stent demonstrated uniform suppression of neointimal growth along the entire stent length. Late lumen loss was similar at the proximal edge of the stent between the two groups, and reduced with the TAXUS stent at the distal edge (p = 0.004). Incomplete stent apposition at nine months was observed in only 3.0% of control and 4.0% of TAXUS stents (p = 0.12).ConclusionsPolymer-based, paclitaxel-eluting TAXUS stents are effective in inhibiting neointimal tissue proliferation, and do not result in late incomplete stent apposition

    On The GeV & TeV Detections of the Starburst Galaxies M82 & NGC 253

    Full text link
    The GeV and TeV emission from M82 and NGC 253 observed by Fermi, HESS, and VERITAS constrains the physics of cosmic rays (CRs) in these dense starbursts. We argue that the gamma rays are predominantly hadronic in origin, as expected by previous studies. The measured fluxes imply that pionic losses are efficient for CR protons in both galaxies: we show that a fraction F_cal ~ 0.2 - 0.4 of the energy injected in high energy primary CR protons is lost to inelastic proton-proton collisions (pion production) before escape, producing gamma rays, neutrinos, and secondary electrons and positrons. We discuss the factor ~2 uncertainties in this estimate, including supernova rate and leptonic contributions to the GeV-TeV emission. We argue that gamma-ray data on ULIRGs like Arp 220 can test whether M82 and NGC 253 are truly calorimetric, and we present upper limits on Arp 220 from the Fermi data. We show that the observed ratio of the GeV to GHz fluxes of the starbursts suggests that non-synchrotron cooling processes are important for cooling the CR electron/positron population. We briefly reconsider previous predictions in light of the gamma-ray detections, including the starburst contribution to the gamma-ray background and CR energy densities. Finally, as a guide for future studies, we list the brightest star-forming galaxies on the sky and present updated predictions for their gamma-ray and neutrino fluxes.Comment: 15 pages, emulateapj format, accepted to ApJ, Table 1 fixe

    Preheating by Previrialization and its Impact on Galaxy Formation

    Full text link
    We use recent observations of the HI-mass function to constrain galaxy formation. The data conflicts with the standard model where most of the gas in a low-mass dark matter halo is assumed to settle into a disk of cold gas that is depleted by star formation and supernova-driven outflows until the disk becomes gravitationally stable. A consistent model can be found if low-mass haloes are embedded in a preheated medium, with a specific gas entropy ~ 10Kev cm^2. Such a model simultaneously matches the faint-end slope of the galaxy luminosity function. We propose a preheating model where the medium around low-mass haloes is preheated by gravitational pancaking. Since gravitational tidal fields suppress the formation of low-mass haloes while promoting that of pancakes, the formation of massive pancakes precedes that of the low-mass haloes within them. We demonstrate that the progenitors of present-day dark matter haloes with M<10^{12}h^{-1}\msun were embedded in pancakes of masses ~5x10^{12}h^{-1}\msun at z~2. The formation of such pancakes heats the gas to a temperature of 5x10^5K and compresses it to an overdensity of ~10. Such gas has a cooling time that exceeds the age of the Universe at z~2, and has a specific entropy of ~15Kev cm^2, almost exactly the amount required to explain the stellar and HI mass functions. (Abridged)Comment: 13 pages, 3 figures. Accepted for publication in MNRA

    GECO: Galaxy Evolution COde - A new semi-analytical model of galaxy formation

    Full text link
    We present a new semi-analytical model of galaxy formation, GECO (Galaxy Evolution COde), aimed at a better understanding of when and how the two processes of star formation and galaxy assembly have taken place. Our model is structured into a Monte Carlo algorithm based on the Extended Press-Schechter theory, for the representation of the merging hierarchy of dark matter halos, and a set of analytic algorithms for the treatment of the baryonic physics, including classical recipes for the gas cooling, the star formation time-scales, galaxy mergers and SN feedback. Together with the galaxies, the parallel growth of BHs is followed in time and their feedback on the hosting galaxies is modelled. We set the model free parameters by matching with data on local stellar mass functions and the BH-bulge relation at z=0. Based on such local boundary conditions, we investigate how data on the high-redshift universe constrain our understanding of the physical processes driving the evolution, focusing in particular on the assembly of stellar mass and on the star formation history. Since both processes are currently strongly constrained by cosmological near- and far-IR surveys, the basic physics of the Lambda CDM hierarchical clustering concept of galaxy formation can be effectively tested by us by comparison with the most reliable set of observables. Our investigation shows that when the time-scales of the stellar formation and mass assembly are studied as a function of dark matter halo mass and the single galaxy stellar mass, the 'downsizing' fashion of star formation appears to be a natural outcome of the model, reproduced even in the absence of the AGN feedback. On the contrary, the stellar mass assembly history turns out to follow a more standard hierarchical pattern progressive in cosmic time, with the more massive systems assembled at late times mainly through dissipationless mergers.Comment: Accepted for publication in A&A, 24 pages, 15 figure

    The intriguing HI gas in NGC 5253: an infall of a diffuse, low-metallicity HI cloud?

    Get PDF
    (Abridged) We present new, deep HI line and 20-cm radio continuum data of the very puzzling blue compact dwarf galaxy NGC 5253, obtained with the ATCA as part of the `Local Volume HI Survey' (LVHIS). Our low-resolution HI maps show the disturbed HI morphology that NGC 5253 possesses, including tails, plumes and detached HI clouds. The high-resolution map reveals an HI plume at the SE and an HI structure at the NW that surrounds an Ha shell. We confirm that the kinematics of the neutral gas are highly perturbed and do not follow a rotation pattern. We discuss the outflow and infall scenarios to explain such disturbed kinematics, analyze the environment in which it resides, and compare it properties with those observed in similar star-forming dwarf galaxies. The radio-continuum emission of NGC 5253 is resolved and associated with the intense star-forming region at the center of the galaxy. We complete the analysis using multiwavelength data extracted from the literature. We estimate the SFR using this multiwavelength approach. NGC 5253 does not satisfy the Schmidt-Kennicutt law of star-formation, has a very low HI mass-to-light ratio when comparing with its stellar mass, and seems to be slightly metal-deficient in comparison with starbursts of similar baryonic mass. Taking into account all available multiwavelength data, we conclude that NGC 5253 is probably experiencing the infall of a diffuse, low-metallicity HI cloud along the minor axis of the galaxy, which is comprising the ISM and triggering the powerful starburst. The tidally disturbed material observed at the east and north of the galaxy is a consequence of this interaction, which probably started more than 100 Myr ago. The origin of this HI cloud may be related with a strong interaction between NGC 5253 and the late-type spiral galaxy M 83 in the past.Comment: 19 pages, 12 figures, accepted for publication in MNRA

    The Star-Forming Galaxy Contribution to the Cosmic MeV and GeV Gamma-Ray Background

    Full text link
    While star-forming galaxies could be major contributors to the cosmic GeV γ\gamma-ray background, they are expected to be MeV-dim because of the "pion bump" falling off below ~100 MeV. However, there are very few observations of galaxies in the MeV range, and other emission processes could be present. We investigate the MeV background from star-forming galaxies by running one-zone models of cosmic ray populations, including Inverse Compton and bremsstrahlung, as well as nuclear lines (including 26^{26}Al), emission from core-collapse supernovae, and positron annihilation emission, in addition to the pionic emission. We use the Milky Way and M82 as templates of normal and starburst galaxies, and compare our models to radio and GeV--TeV γ\gamma-ray data. We find that (1) higher gas densities in high-z normal galaxies lead to a strong pion bump, (2) starbursts may have significant MeV emission if their magnetic field strengths are low, and (3) cascades can contribute to the MeV emission of starbursts if they emit mainly hadronic γ\gamma-rays. Our fiducial model predicts that most of the unresolved GeV background is from star-forming galaxies, but this prediction is uncertain by an order of magnitude. About ~2% of the claimed 1 MeV background is diffuse emission from star-forming galaxies; we place a firm upper limit of <~10% based on the spectral shape of the background. The star-formation contribution is constrained to be small, because its spectrum is peaked, while the observed background is steeply falling with energy through the MeV-GeV range.Comment: Published in ApJ, 27 pages, emulateapj format. Readers may be interested in the concurrent paper by Chakraborty and Fields (arXiv:1206.0770), a calculation of the Inverse Compton background from star-forming galaxie

    Controlling the shape of a quantum wavefunction

    Full text link
    The ability to control the shape and motion of quantum states(1,2) may lead to methods for bond-selective chemistry and novel quantum technologies, such as quantum computing. The classical coherence of laser light has been used to guide quantum systems into desired target states through interfering pathways(3-5). These experiments used the control of target properties-such as fluorescence from a dye solution(6), the current in a semiconductor(7,8) 8 Or the dissociation fraction of an excited molecule(9)-to infer control over the quantum state. Here we report a direct approach to coherent quantum control that allows us to actively manipulate the shape of an atomic electron's radial wavefunction, We use a computer-controlled laser to excite a coherent state in atomic caesium. The shape of the wavefunction is then measured(10) and the information fed back into the laser control system, which reprograms the optical field. The process is iterated until the measured shape of the wavefunction matches that of a target wavepacket, established at the start of the experiment. We find that, using a variation of quantum holography(11) to reconstruct the measured wavefunction, the quantum state can be reshaped to match the target within two iterations of the feedback loop.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62625/1/397233a0.pd

    Coordinated Monitoring of the Eccentric O-star Binary Iota Orionis: The X-ray Analysis

    Get PDF
    We analyse two ASCA observations of the highly eccentric O9III + B1III binary Iota Orionis obtained at periastron and apastron. Based on the assumption of a strong colliding winds shock between the stellar components, we expected to see significant variation in the X-ray emission between these phases. The observations proved otherwise: the X-ray luminosities and spectral distributions were remarkably similar. The only noteworthy feature was the hint of a proximity effect during periastron passage, supported also in the optical. We discuss the accuracy of our results, and also analyse archival ROSAT observations. We investigate why we do not see a clear colliding winds signature. A simple model shows that the wind attenuation to the expected position of the shock apex is negligible throughout the orbit, which poses the puzzling question of why the expected 1/D variation (ie. a factor of 7.5) in the intrinsic luminosity is not seen in the data. Two scenarios are proposed: either the colliding winds emission is unexpectedly weak such that intrinsic shocks in the winds dominate the emission, or, alternatively, that the emission observed is colliding winds emission but in a more complex form than we would naively expect. Complex hydrodynamical models are then analyzed. Despite strongly phase-variable emission from the models, both were consistent with the observations. We find that if the mass-loss rates of the stars are low then intrinsic wind shocks could dominate the emission. However, when we assume higher mass-loss rates of the stars, we find that the observed emission could also be consistent with a purely colliding winds origin. To distinguish between the different models X-ray observations with improved phase coverage will be necessary.Comment: 18 pages, 14 figures, uses mn.st
    corecore