8 research outputs found

    Assessing the effects of a mixed Eimeria spp. challenge on performance, intestinal integrity, and the gut microbiome of broiler chickens

    Get PDF
    A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0–16, grower d16–31, finisher d31–42, and withdrawal d42–52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16–31 was significantly (p < 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET

    Health, education, and social care provision after diagnosis of childhood visual disability

    Get PDF
    Aim: To investigate the health, education, and social care provision for children newly diagnosed with visual disability.Method: This was a national prospective study, the British Childhood Visual Impairment and Blindness Study 2 (BCVIS2), ascertaining new diagnoses of visual impairment or severe visual impairment and blindness (SVIBL), or equivalent vi-sion. Data collection was performed by managing clinicians up to 1-year follow-up, and included health and developmental needs, and health, education, and social care provision.Results: BCVIS2 identified 784 children newly diagnosed with visual impairment/SVIBL (313 with visual impairment, 471 with SVIBL). Most children had associated systemic disorders (559 [71%], 167 [54%] with visual impairment, and 392 [84%] with SVIBL). Care from multidisciplinary teams was provided for 549 children (70%). Two-thirds (515) had not received an Education, Health, and Care Plan (EHCP). Fewer children with visual impairment had seen a specialist teacher (SVIBL 35%, visual impairment 28%, χ2p < 0.001), or had an EHCP (11% vs 7%, χ2p < 0 . 01).Interpretation: Families need additional support from managing clinicians to access recommended complex interventions such as the use of multidisciplinary teams and educational support. This need is pressing, as the population of children with visual impairment/SVIBL is expected to grow in size and complexity.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    South East Queensland catchment modelling for stormwater harvesting research: instrumentation and hydrological model calibration and validation

    No full text
    Stormwater is one of the last major untapped sources of water in the urban landscape. South East Queensland (SEQ) urban runoff varies between 240 and 750 GL/year, of which about half is required to maintain environmental flow requirements in the lower reaches of the SEQ river systems. The challenge for using stormwater includes its capture, storage, appropriate treatment, and supply to end users at cost effective prices. Major potential end uses include dual reticulation in greenfield urban developments (in lieu of rainwater tanks to achieve the mandated mains water saving of 70 kL/household/year) and irrigation of high value public open spaces such as playing fields. There is a consensus view amongst freshwater ecologists that the increased frequency and peak discharge of runoff has seriously degraded the ecosystem health of urban creeks. Hence, stormwater harvesting is one method to reduce adverse ecosystem impacts and achieve the runoff objectives (contaminants, frequency, amount, peak discharge) defined in the SEQ Regional Plan (2009) Implementation Guideline #7. However, the science linking hydrological response to creek ecosystem response is poorly understood. Until it can be demonstrated that stormwater harvesting does not adversely affect environmental flows, state regulators are disinclined to promote (or even approve) the practice in the Resource Operating Plan/Resource Allocation Plan (ROP/RAP) environment of water regulation in SEQ. An inevitable hydrological consequence of urbanisation is an increase in the fraction of impervious areas (roads, roofs, paving etc.) and consequent increases in runoff, frequency of runoff events, and peak discharges at various return intervals. The consequences of this changed hydrology are elevated concentrations of nutrients and contaminants, degraded channel morphology, reduced biota richness, and increased dominance of tolerant species (Walsh et al., 2005). Land uses in an urban catchment which reduce the frequency of runoff events, (and hence runoff %) and the peak discharges are considered to be beneficial to the restoration of stream ecosystem function. It follows that stormwater harvesting practices that can reduce the frequency of small events and take the top off peak discharge rates should be beneficial to the creek ecosystem. However, the other view is that abstraction of water from streams and rivers is likely to cause environmental harm, and until the safe environmental flows (based on the natural flow regime) are defined, extraction for beneficial uses should not be allowed. This stance has been adopted by the water regulator (DERM) as required by the Queensland Water Act (2000) and supported by numerous studies that many of our (inland) river systems are degraded due to over-extraction of water (both in its timing and amount) for human purposes. Therefore, catchment hydrology modelling is an essential part of this project. Calibrated hydrologic models are widely used for stream flow simulation and to define hydrologic characteristics of streams. A reliable flow simulation depends on availability of reliable stream flow data and a reliable rainfall runoff model. Therefore, considerable effort has been invested in instrumentation of 12 catchments located in SEQ across a land use gradient from nil to significant urbanisation, in order to obtain continuous rainfall and creek flow data. A US EPA Stormwater Management Model (SWMM) has been calibrated and validated for each catchment at an hourly resolution, using two years of continuous hourly rainfall and runoff data. This technical report documents the work involved in doing so from instrumentation to catchment calibration and validation. This report consists of a detailed description of catchments, hydrologic instrumentation techniques, rating curve development, estimation of catchment impervious fraction, description of the US EPA Stormwater Management Model, calibration and SWMM parameter estimations, and sensitivity analysis of SWMM parameters. The results of running the SWMM catchment models under baseline (current) land use conditions, and a series of stormwater harvesting and urbanisation scenarios will be reported separately
    corecore