30 research outputs found

    Mutations in GABRB3

    Get PDF
    Objective: To examine the role of mutations in GABRB3 encoding the b3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. Methods: We performed massive parallel sequencing of GABRB3 in 416 patients with a range of epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with epilepsy with GABRB3 mutations from other research and diagnostic programs. Results: We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands frommultiplex families. The phenotypic spectrum of the mutation carriers ranged from simple febrile seizures, genetic epilepsies with febrile seizures plus, and epilepsy withmyoclonic-atonic seizures to West syndrome and other types of severe, early-onset epileptic encephalopathies. Electrophysiologic analysis of 7 mutations in Xenopus laevis oocytes, using coexpression of wild-type or mutant beta(3), together with alpha(5) and gamma(2s) subunits and an automated 2-microelectrode voltage-clamp system, revealed reduced GABA-induced current amplitudes or GABA sensitivity for 5 of 7 mutations. Conclusions: Our results indicate that GABRB3 mutations are associated with a broad phenotypic spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition represents the relevant disease mechanism

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome

    The Potential of Antimicrobial Peptides as Biocides

    Get PDF
    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections

    <i>GRIN2A</i>-related disorders:genotype and functional consequence predict phenotype

    Get PDF
    Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders

    L-serine treatment is associated with improvements in behavior, EEG, and seizure frequency in individuals with GRIN-related disorders due to null variants

    No full text
    Pathogenic missense variants in GRIN2A and GRIN2B may result in gain or loss of function (GoF/LoF) of the N-methyl-D-aspartate receptor (NMDAR). This observation gave rise to the hypothesis of successfully treating GRIN-related disorders due to LoF variants with co-agonists of the NMDAR. In this respect, we describe a retrospectively collected series of ten individuals with GRIN2A- or GRIN2B-related disorders who were treated with L-serine, each within an independent n-of-1 trial. Our cohort comprises one individual with a LoF missense variant with clinical improvements confirming the above hypothesis and replicating a previous n-of-1 trial. A second individual with a GoF missense variant was erroneously treated with L-serine and experienced immediate temporary behavioral deterioration further supporting the supposed functional pathomechanism. Eight additional individuals with null variants (that had been interpreted as loss-of-function variants despite not being missense) again showed clinical improvements. Among all nine individuals with LoF missense or null variants, L-serine treatment was associated with improvements in behavior in eight (89%), in development in four (44%), and/or in EEG or seizure frequency in four (44%). None of these nine individuals experienced side effects or adverse findings in the context of L-serine treatment. In summary, we describe the first evidence that L-serine treatment may not only be associated with clinical improvements in GRIN-related disorders due to LoF missense but particularly also null variants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13311-021-01173-9

    Efficacy, Tolerability, and Retention of Antiseizure Medications in PRRT2-Associated Infantile Epilepsy

    No full text
    Background and Objectives Pathogenic variants in PRRT2, encoding for the proline-rich transmembrane protein 2, were identified as the main cause of self-limiting sporadic and familial infantile epilepsy. Reported data on treatment response to antiseizure medications (ASMs) in defined monogenic epilepsies are limited. The aim of this study was to evaluate the treatment response of ASMs in children with monogenic PRRT2-associated infantile epilepsy. Methods A multicenter, retrospective, cross-sectional cohort study was conducted according to the Strengthening the Reporting of Observational Studies in Epidemiology criteria. Inclusion criteria were occurrence of infantile seizures and genetic diagnosis of likely pathogenic/pathogenic PRRT2 variants. Results Treatment response data from 52 individuals with PRRT2-associated infantile epilepsy with a total of 79 treatments (defined as each use of an ASM in an individual) were analyzed. Ninety-six percent (50/52) of all individuals received ASMs. Levetiracetam (LEV), oxcarbazepine (OXC), valproate (VPA), and phenobarbital (PB) were most frequently administered. Sodium channel blockers were used in 22 individuals and resulted in seizure freedom in all but 1 child, who showed a reduction of more than 50% in seizure frequency. By contrast, treatment with LEV was associated with worsening of seizure activity in 2/25 (8%) treatments and no effect in 10/25 (40%) of treatments. LEV was rated significantly less effective also compared with VPA and PB. The retention rate for LEV was significantly lower compared with all aforementioned ASMs. No severe adverse events were reported, and no discontinuation of treatment was reported because of side effects. Discussion In conclusion, a favorable effect of most ASMs, especially sodium channel blockers such as carbamezepine and OXC, was observed, whereas the efficacy and the retention rate of LEV was lower in PRRT2-associated childhood epilepsy. Tolerability in these young children was good for all ASMs reported in the cohort

    Trendbericht Organische Chemie

    No full text
    Rekordwert bei der Umwandlung von Sonnenlicht in Tandemsolarzellen – längstes Acen – X‐förmiges Porphyrintetramer – hochpotenter Influenza‐Neuramidinidase‐Inhibitor – Totalsynthese von Isoplagiochin D – chirales Phosphat zur stereoselektiven Katalyse – mechanochemische Direktsynthese einfacher Alkoxysilane aus Silicium und Alkoholen

    Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes

    No full text
    Importance Knowing the range of symptoms seen in patients with a missense or loss-of-function variant in KCNB1 and how these symptoms correlate with the type of variant will help clinicians with diagnosis and prognosis when treating new patients. Objectives To investigate the clinical spectrum associated with KCNB1 variants and the genotype-phenotype correlations. Design, Setting, and Participants This study summarized the clinical and genetic information of patients with a presumed pathogenic variant in KCNB1.Patients were identified in research projects or during clinical testing. Information on patients from previously published articles was collected and authors contacted if feasible. All patients were seen at a clinic at one of the participating institutes because of presumed genetic disorder. They were tested in a clinical setting or included in a research project. Main Outcomes and Measures The genetic variant and its inheritance and information on the patient's symptoms and characteristics in a predefined format. All variants were identified with massive parallel sequencing and confirmed with Sanger sequencing in the patient. Absence of the variant in the parents could be confirmed with Sanger sequencing in all families except one. Results Of 26 patients (10 female, 15 male, 1 unknown; mean age at inclusion, 9.8 years; age range, 2-32 years) with developmental delay, 20 (77%) carried a missense variant in the ion channel domain of KCNB1, with a concentration of variants in region S5 to S6. Three variants that led to premature stops were located in the C-terminal and 3 in the ion channel domain. Twenty-one of 25 patients (84%) had seizures, with 9 patients (36%) starting with epileptic spasms between 3 and 18 months of age. All patients had developmental delay, with 17 (65%) experiencing severe developmental delay; 14 (82%) with severe delay had behavioral problems. The developmental delay was milder in 4 of 6 patients with stop variants and in a patient with a variant in the S2 transmembrane element rather than the S4 to S6 region. Conclusions and Relevance De novo KCNB1 missense variants in the ion channel domain and loss-of-function variants in this domain and the C-terminal likely cause neurodevelopmental disorders with or without seizures. Patients with presumed pathogenic variants in KCNB1 have a variable phenotype. However, the type and position of the variants in the protein are (imperfectly) correlated with the severity of the disorder
    corecore