150 research outputs found
Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line
The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2)) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH(2) supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 Γ 10β»ΒΉΒ²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 Γ 10β»ΒΉΒΉ) on 19q12 maps to CCNE1 and rs11892031 (P = 1 Γ 10β»β·) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 Γ 10β»ΒΉΒΉ) and a tag SNP for NAT2 acetylation status (P = 4 Γ 10β»ΒΉΒΉ), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
Multi-Ethnic Analysis of Lipid-Associated Loci: The NHLBI CARe Project
Background: Whereas it is well established that plasma lipid levels have substantial heritability within populations, it remains unclear how many of the genetic determinants reported in previous studies (largely performed in European American cohorts) are relevant in different ethnicities. Methodology/Principal Findings: We tested a set of 50,000 polymorphisms from 2,000 candidate genes and genetic loci from genome-wide association studies (GWAS) for association with low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) in 25,000 European Americans and 9,000 African Americans in the National Heart, Lung, and Blood Institute (NHLBI) Candidate Gene Association Resource (CARe). We replicated associations for a number of genes in one or both ethnicities and identified a novel lipid-associated variant in a locus harboring ICAM1. We compared the architecture of genetic loci associated with lipids in both African Americans and European Americans and found that the same genes were relevant across ethnic groups but the specific associated variants at each gene often differed. Conclusions/Significance: We identify or provide further evidence for a number of genetic determinants of plasma lipid levels through population association studies. In many loci the determinants appear to differ substantially between African Americans and European Americans
The Muslim headscarf and face perception: "they all look the same, don't they?"
YesThe headscarf conceals hair and other external features of a head (such as the ears). It therefore may have implications for the way in which such faces are perceived. Images of faces with hair (H) or alternatively, covered by a headscarf (HS) were used in three experiments. In Experiment 1 participants saw both H and HS faces in a yes/no recognition task in which the external features either remained the same between learning and test (Same) or switched (Switch). Performance was similar for H and HS faces in both the Same and Switch condition, but in the Switch condition it dropped substantially compared to the Same condition. This implies that the mere presence of the headscarf does not reduce performance, rather, the change between the type of external feature (hair or headscarf) causes the drop in performance. In Experiment 2, which used eye-tracking methodology, it was found that almost all fixations were to internal regions, and that there was no difference in the proportion of fixations to external features between the Same and Switch conditions, implying that the headscarf influenced processing by virtue of extrafoveal viewing. In Experiment 3, similarity ratings of the internal features of pairs of HS faces were higher than pairs of H faces, confirming that the internal and external features of a face are perceived as a whole rather than as separate components.The Educational Charity of the Federation of Ophthalmic and Dispensing Opticians
Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands
We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: AdΓ©lie (Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua ellsworthii) over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum), chinstrap penguins declined by 68% (-3.6% per annum) and AdΓ©lie penguins declined by 42% (-1.5% per annum). The chinstrap population has declined steadily over the last four decades. In contrast, AdΓ©lie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and AdΓ©lie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and AdΓ©lie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the AdΓ©lie and chinstrap penguin populations at Signy Island over the last five decades, and a gradual increase in gentoo breeding pairs
The Impact of Divergence Time on the Nature of Population Structure: An Example from Iceland
The Icelandic population has been sampled in many disease association studies, providing a strong motivation to understand the structure of this population and its ramifications for disease gene mapping. Previous work using 40 microsatellites showed that the Icelandic population is relatively homogeneous, but exhibits subtle population structure that can bias disease association statistics. Here, we show that regional geographic ancestries of individuals from Iceland can be distinguished using 292,289 autosomal single-nucleotide polymorphisms (SNPs). We further show that subpopulation differences are due to genetic drift since the settlement of Iceland 1100 years ago, and not to varying contributions from different ancestral populations. A consequence of the recent origin of Icelandic population structure is that allele frequency differences follow a null distribution devoid of outliers, so that the risk of false positive associations due to stratification is minimal. Our results highlight an important distinction between population differences attributable to recent drift and those arising from more ancient divergence, which has implications both for association studies and for efforts to detect natural selection using population differentiation
Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a βcosmopolitanβ tagging approach to capture the genetic diversity across βΌ2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project
Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia
- β¦