74 research outputs found

    Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica

    Get PDF
    At the Costa Rica margin along the Middle America Trench along‐strike variations in heat flow are well mapped. These variations can be understood in terms of either ventilated fluid flow, where exposed basement allows fluids to freely advect heat between the crustal aquifer and ocean, or insulated fluid flow where continuous sediment cover restricts heat advection to within the crustal aquifer. We model fluid flow within the subducting aquifer using Nusselt number approximations coupled with finite element models of subduction and explore its effect on temperatures along the subduction thrust. The sensitivity of these models to the initial thermal state of the plate and styles of fluid flow, either ventilated or insulated, is explored. Heat flow measurements on cool crust accreted at the East Pacific Rise are consistent with ventilated hydrothermal cooling that continues with subduction. These models yield much cooler temperatures than predicted from simulations initialized with conductive predictions and without hydrothermal circulation. Heat flow transects on warm crust accreted at the Cocos‐Nazca spreading center are consistent with models of insulated hydrothermal circulation that advects heat updip within the subducting crustal aquifer. Near the trench these models are warmer than conductive predictions and cooler than conductive predictions downdip of the trench. Comparisons between microseismicity and modeled isotherms suggest that the updip limit of microseismicity occurs at temperatures warmer than 100°C and that the downdip extent of microseismicity is bounded by the intersection of the subduction thrust with the base of the overriding crust

    Association of polygenic risk score with the risk of chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis

    Get PDF
    Inherited loci have been found to be associated with risk of chronic lymphocytic leukemia (CLL). A combined polygenic risk score (PRS) of representative single nucleotide polymorphisms (SNPs) from these loci may improve risk prediction over individual SNPs. Herein, we evaluated the association of a PRS with CLL risk and its precursor, monoclonal B-cell lymphocytosis (MBL). We assessed its validity and discriminative ability in an independent sample and evaluated effect modification and confounding by family history (FH) of hematological cancers. For discovery, we pooled genotype data on 41 representative SNPs from 1499 CLL and 2459 controls from the InterLymph Consortium. For validation, we used data from 1267 controls from Mayo Clinic and 201 CLL, 95 MBL, and 144 controls with a FH of CLL from the Genetic Epidemiology of CLL Consortium. We used odds ratios (ORs) to estimate disease associations with PRS and c-statistics to assess discriminatory accuracy. In InterLymph, the continuous PRS was strongly associated with CLL risk (OR, 2.49; P 5 4.4310294). We replicated these findings in the Genetic Epidemiology of CLL Consortium and Mayo controls (OR, 3.02; P 5 7.8 3 10230) and observed high discrimination (c-statistic 5 0.78). When jointly modeled with FH, PRS retained its significance, along with FH status. Finally, we found a highly significant association of the continuous PRS with MBL risk (OR, 2.81; P 5 9.8 310216). In conclusion, our validated PRS was strongly associated with CLL risk, adding information beyond FH.The PRS provides a means of identifying those individuals at greater risk for CLL as well as those at increased risk of MBL, a condition that has potential clinical impact beyond CLL

    Genetically Determined Height and Risk of Non-hodgkin Lymphoma

    Get PDF
    Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00\u20131.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01\u20131.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes

    Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes

    Get PDF
    Aim: Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. Methods: We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. Results: We discovered positive associations between FROH and CLL (ÎČ = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (ÎČ = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (ÎČ = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. Conclusion: Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk

    Genetically Determined Height and Risk of Non-hodgkin Lymphoma

    Get PDF
    Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00–1.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01–1.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes

    HLA class I and II diversity contributes to the etiologic heterogeneity of non-Hodgkin lymphoma subtypes

    Get PDF
    A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of "heterozygote advantage" regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL = 1.31, 95% CI = 1.06–1.60; OR MZL = 1.45, 95% CI = 1.12–1.89) and class II HLA-DRB1 locus (OR DLBCL = 2.10, 95% CI = 1.24–3.55; OR MZL = 2.10, 95% CI = 0.99–4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (P trend < 0.0001, FDR = 0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes. Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma

    Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

    Get PDF
    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response
    • 

    corecore