20 research outputs found

    Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    Get PDF
    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H\u3b1 emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (\ue2\u2030 30%) of H\u3b1 having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I\u3bd) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l >-90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in H\u3b1 at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2\u3c3 upper limit of 1.6% in the Perseus region

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Cytokine modulation correlates with severity of monkeypox disease in humans.

    No full text
    BackgroundHuman monkeypox is a zoonotic disease endemic to parts of Africa. Similar to other orthopoxviruses, virus and host have considerable interactions through immunomodulation. These interactions likely drive the establishment of a productive infection and disease progression, resulting in the range of disease presentations and case fatality rates observed for members of the Orthopoxvirus genus.ObjectivesMuch of our understanding about the immune response to orthopoxvirus infection comes from either in vitro or in vivo studies performed in small animals or non-human primates. Here, we conducted a detailed assessment of cytokine responses to monkeypox virus using serum from acutely ill humans collected during monkeypox active disease surveillance (2005-2007) in the Democratic Republic of the Congo.Study designNineteen serum samples that were from patients with confirmed monkeypox virus infections were selected for cytokine profiling. Cytokine profiling was performed on the Bio-Rad Bioplex 100 system using a 30-plex human cytokine panel.ResultsCytokine profiling revealed elevated cytokine concentrations in all samples. Overproduction of certain cytokines (interleukin [IL]-2R, IL-10, and granulocyte macrophage-colony stimulating factor were observed in patients with serious disease (defined as >250 lesions based on the World Health Organization scoring system).ConclusionsThe data suggest that cytokine modulation affects monkeypox disease severity in humans

    Innocents Convicted: An Empirically Justified Wrongful Conviction Rate

    No full text
    corecore