87 research outputs found

    It's Not Just Dinner: Meal Delivery Kits as Food Media for Food Citizens

    Get PDF
    Meal kit delivery services rhetorically appeal to middle class consumers who have busy lives, but want to eat good quality food without the hassle of grocery shopping and meal planning. In this paper, we advance three arguments to explore the cultural phenomenon of these meal services that are growing exponentially across the United States and in other countries. First, such meal kits, in their efforts to provide meal and ingredient variation, decontextualize food cultures while promoting a consumer sense of cosmopolitanism. Second, meal kit companies have attempted to address environmental concerns of waste production, but many of those problems have yet to be resolved despite rhetorical appeals to the contrary. Finally, while such meal kits do not address fully the challenges and problems of global food production and capitalist systems, they do confront those who use them with some of the realities of where their food comes from and what kind of waste it produces. We ultimately argue that such companies manifest the return of the repressed through the material and rhetorical production of food and waste even as they employ diverse cultural food options and erase those cultural origins at the same time. Meal kit delivery services' interactivity and confrontation with waste distinguishes them from traditional food media. Despite their investment in the performative dimensions of cooking as a way to reconnect with the food system, they also miss opportunities to address gender, culture, and waste, which limits the radical potential of that performativity

    Rare’s Conservation Campaigns: Community Decision Making and Public Participation for Behavioral Change in Indonesia, China, and Latin America

    Get PDF
    In this chapter we explore the ways in which Rare, an international non-profit organization, uses institutional, practical, and local knowledge as a symbolic resource to create environmental change. Rare’s approach involves identifying human behaviors that cause threats to biodiversity, using social science research to identify community-based and public participation solutions to change these behaviors, launching a Pride campaign designed to instill pride within a local community and to facilitate the removal of barriers to conservation, and adapting conservation solutions on a broader scale. Such an approach enables Rare and its campaign managers to draw on expertise from all kinds of backgrounds, experiences, and different knowledge bases that allows for contextual and effective behavior change in conservation rooted in public participation and community empowerment. Rare partners with The University of Texas at El Paso to offer a master’s degree program for Pride campaign managers, and we have collected data while supervising the coursework and assignments for this program through qualitative approaches, such as ethnography, interviews, and field site visits, and quantitative approaches, such as knowledge-attitude-practice (KAP) surveys implemented by our students (the Rare campaign managers). Based on these data, we offer case studies from three regions where Rare works: Indonesia, Latin America, and China. While conservation efforts often focus on tangible material resources, limiting the available options for change, we ultimately argue that Rare’s focus on symbolic resources in Pride campaigns uses the paradigm of constructed potentiality (Foss & Foss, 2011), generating multiple options for creating change through public participation

    Optical Spectral Variability of the Very-High-Energy Gamma-Ray Blazar 1ES 1011+496

    Full text link
    We present results of five years of optical (UBVRI) observations of the very-high-energy gamma-ray blazar 1ES 1011+496 at the MDM Observatory. We calibrated UBVRI magnitudes of five comparison stars in the field of the object. Most of our observations were done during moderately faint states of 1ES 1011+496 with R > 15.0. The light curves exhibit moderate, closely correlated variability in all optical wavebands on time scales of a few days. A cross-correlation analysis between optical bands does not show significant evidence for time lags. We find a positive correlation (Pearson's r = 0.57; probability of non-correlation P(>r) ~ 4e-8) between the R-band magnitude and the B - R color index, indicating a bluer-when-brighter trend. Snap-shot optical spectral energy distributions (SEDs) exhibit a peak within the optical regime, typically between the V and B bands. We find a strong (r = 0.78; probability of non-correlation P (>r) ~ 1e-15) positive correlation between the peak flux and the peak frequency, best fit by a relation νFνpkνpkk\nu F_{\nu}^{\rm pk} \propto \nu_{\rm pk}^k with k = 2.05 +/- 0.17. Such a correlation is consistent with the optical (synchrotron) variability of 1ES 1011+496 being primarily driven by changes in the magnetic field.Comment: Accepted for publication in ApJ. 16 pages, including 7 figure

    A Connection Between Apparent VLBA Jet Speeds and Initial Active Galactic Nucleus Detections Made by the Fermi Gamma-ray Observatory

    Full text link
    In its first three months of operations, the Fermi Gamma-Ray Observatory has detected approximately one quarter of the radio-flux-limited MOJAVE sample of bright flat-spectrum active galactic nuclei (AGNs) at energies above 100 MeV. We have investigated the apparent parsec-scale jet speeds of 26 MOJAVE AGNs measured by the Very Long Baseline Array (VLBA) that are in the LAT bright AGN sample (LBAS). We find that the gamma-ray bright quasars have faster jets on average than the non-LBAS quasars, with a median of 15 c, and values ranging up to 34 c. The LBAS AGNs in which the LAT has detected significant gamma-ray flux variability generally have faster jets than the nonvariable ones. These findings are in overall agreement with earlier results based on nonuniform EGRET data which suggested that gamma-ray bright AGNs have preferentially higher Doppler boosting factors than other blazar jets. However, the relatively low LAT detection rates for the full MOJAVE sample (24%) and previously known MOJAVE EGRET-detected blazars (43%) imply that Doppler boosting is not the sole factor that determines whether a particular AGN is bright at gamma-ray energies. The slower apparent jet speeds of LBAS BL Lac objects and their higher overall LAT detection rate as compared to quasars suggest that the former are being detected by Fermi because of their higher intrinsic (unbeamed) gamma-ray to radio luminosity ratios.Comment: 5 pages, 3 figures, 2 tables, accepted by the Astrophysical Journal Letters; minor corrections to the text are mad

    On the relation between AGN gamma-ray emission and parsec-scale radio jets

    Full text link
    We have compared the radio emission from a sample of parsec-scale AGN jets as measured by the VLBA at 15 GHz, with their associated gamma-ray properties that are reported in the Fermi LAT 3-month bright source list. We find in our radio-selected sample that the gamma-ray photon flux correlates well with the quasi-simultaneously measured compact radio flux density. The LAT-detected jets in our radio-selected complete sample generally have higher compact radio flux densities, and their parsec-scale cores are brighter (i.e., have higher brightness temperature) than the jets in the LAT non-detected objects. This suggests that the jets of bright gamma-ray AGN have preferentially higher Doppler-boosting factors. In addition, AGN jets tend to be found in a more active radio state within several months from LAT-detection of their strong gamma-ray emission. This result becomes more pronounced for confirmed gamma-ray flaring sources. We identify the parsec-scale radio core as a likely location for both the gamma-ray and radio flares, which appear within typical timescales of up to a few months of each other.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical Journal Letters; title is changed, minor corrections of the text are mad

    The IDV source J1128+5925, a new candidate for annual modulation?

    Full text link
    Short time-scale radio variations of compact extragalactic radio sources, known as IntraDay Variability, can be explained in at least some sources by a source-extrinsic effect, in which the variations are interpreted as scintillation of radio waves caused by the turbulent ISM of the Milky Way. One of the most convincing observational arguments in favour of propagation-induced variability is the so called annual modulation of the characteristic variability time-scale, which is due to the orbital motion of the Earth. Data for the recently discovered and highly variable IDV source J1128+5925 are presented. We study the frequency and time dependence of the IDV in this compact quasar. We measure the characteristic variability time-scale of the IDV throughout the year, and analyze whether the observed changes in the variability time-scale are consistent with annual modulation. We monitored the flux density variability of J1128+5925 with dense time sampling between 2.7 and 10.45GHz with the 100m Effelsberg radio telescope of the MPIfR and with the 25m Urumqi radio telescope. From ten observing sessions, we determine the variability characteristics and time-scales. The observed pronounced changes of the variability time-scale of J1128+5925 are modelled with an anisotropic annual modulation model. The observed frequency dependence of the variation is in good agreement with the prediction from interstellar scintillation. Adopting a simple model for the annual modulation model and using also the frequency dependence of the IDV, we derive a lower limit to the distance of the scattering screen and an upper limit to the scintillating source size. The latter is found to be consistent with the measured core size from VLBI.Comment: 15 pages, 9 figures Accepted for publication in Astronomy and Astrophysic

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovered a rapid (about 5 days duration), high-energy (E >100 MeV) gamma-ray outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3 1502+10, z=1.839) starting on August 05, 2008 and followed by bright and variable flux over the next few months. Results on the gamma-ray localization and identification, as well as spectral and temporal behavior during the first months of the Fermi all-sky survey are reported here in conjunction with a multi-waveband characterization as a result of one of the first Fermi multi-frequency campaigns. The campaign included a Swift ToO (followed up by 16-day observations on August 07-22, MJD 54685-54700), VLBA (within the MOJAVE program), Owens Valley (OVRO) 40m, Effelsberg-100m, Metsahovi-14m, RATAN-600 and Kanata-Hiroshima radio/optical observations. Results from the analysis of archival observations by INTEGRAL, XMM-Newton and Spitzer space telescopes are reported for a more complete picture of this new gamma-ray blazar.Comment: 17 pages, 11 figures, accepted for The Astrophysical Journa

    Fermi/LAT discovery of gamma-ray emission from a relativistic jet in the narrow-line quasar PMN J0948+0022

    Get PDF
    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope of high-energy gamma-ray emission from the peculiar quasar PMN J0948+0022 (z=0.5846). The optical spectrum of this object exhibits rather narrow Hbeta (FWHM(Hbeta) ~ 1500 km s^-1), weak forbidden lines and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at high Eddington ratio. The radio loudness and variability of the compact radio core indicates the presence of a relativistic jet. Quasi simultaneous radio-optical-X-ray and gamma-ray observations are presented. Both radio and gamma-ray emission (observed over 5-months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broad band spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful FSRQ. A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power, with respect to other FSRQ. The physical parameters obtained from modelling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini (2008). We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.Comment: 10 pages, 5 figures, accepted for publication on ApJ Main Journal. Corresponding author: L. Foschin

    Fermi Large Area Telescope Bright Gamma-ray Source List

    Full text link
    Following its launch in June 2008, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in 3 months produced a deeper and better-resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than ~10-sigma) gamma-ray sources in these data. These are the best-characterized and best-localized point-like (i.e., spatially unresolved) gamma-ray sources in the early-mission data.Comment: Accepted by ApJS. Many helpful comments by referee incorporated 57 pages, 12 figure
    corecore