1,095 research outputs found

    Bayesian mass and age estimates for transiting exoplanet host stars

    Full text link
    The mean density of a star transited by a planet, brown dwarf or low mass star can be accurately measured from its light curve. This measurement can be combined with other observations to estimate its mass and age by comparison with stellar models. Our aim is to calculate the posterior probability distributions for the mass and age of a star given its density, effective temperature, metallicity and luminosity. We computed a large grid of stellar models that densely sample the appropriate mass and metallicity range. The posterior probability distributions are calculated using a Markov-chain Monte-Carlo method. The method has been validated by comparison to the results of other stellar models and by applying the method to stars in eclipsing binary systems with accurately measured masses and radii. We have explored the sensitivity of our results to the assumed values of the mixing-length parameter, αMLT\alpha_{\rm MLT}, and initial helium mass fraction, Y. For a star with a mass of 0.9 solar masses and an age of 4 Gyr our method recovers the mass of the star with a precision of 2% and the age to within 25% based on the density, effective temperature and metallicity predicted by a range of different stellar models. The masses of stars in eclipsing binaries are recovered to within the calculated uncertainties (typically 5%) in about 90% of cases. There is a tendency for the masses to be underestimated by about 0.1 solar masses for some stars with rotation periods Prot<7_{\rm rot}< 7d. Our method makes it straightforward to determine accurately the joint posterior probability distribution for the mass and age of a star eclipsed by a planet or other dark body based on its observed properties and a state-of-the art set of stellar models.Comment: Accepted for publication in A&A. 9 pages, 4 figures. Source code for the software described is available from http://sourceforge.net/projects/bagemas

    High-precision photometry by telescope defocussing. III. The transiting planetary system WASP-2

    Full text link
    We present high-precision photometry of three transits of the extrasolar planetary system WASP-2, obtained by defocussing the telescope, and achieving point-to-point scatters of between 0.42 and 0.73 mmag. These data are modelled using the JKTEBOP code, and taking into account the light from the recently-discovered faint star close to the system. The physical properties of the WASP-2 system are derived using tabulated predictions from five different sets of stellar evolutionary models, allowing both statistical and systematic errorbars to be specified. We find the mass and radius of the planet to be M_b = 0.847 +/- 0.038 +/- 0.024 Mjup and R_b = 1.044 +/- 0.029 +/- 0.015 Rjup. It has a low equilibrium temperature of 1280 +/- 21 K, in agreement with a recent finding that it does not have an atmospheric temperature inversion. The first of our transit datasets has a scatter of only 0.42 mmag with respect to the best-fitting light curve model, which to our knowledge is a record for ground-based observations of a transiting extrasolar planet.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 10 table

    Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry

    Get PDF
    The radii of giant planets, as measured from transit observations, may vary with wavelength due to Rayleigh scattering or variations in opacity. Such an effect is predicted to be large enough to detect using ground-based observations at multiple wavelengths. We present defocussed photometry of a transit in the HAT-P-5 system, obtained simultaneously through Stromgren u, Gunn g and r, and Johnson I filters. Two more transit events were observed through a Gunn r filter. We detect a substantially larger planetary radius in u, but the effect is greater than predicted using theoretical model atmospheres of gaseous planets. This phenomenon is most likely to be due to systematic errors present in the u-band photometry, stemming from variations in the transparency of Earth's atmosphere at these short wavelengths. We use our data to calculate an improved orbital ephemeris and to refine the measured physical properties of the system. The planet HAT-P-5b has a mass of 1.06 +/- 0.11 +/- 0.01 Mjup and a radius of 1.252 +/- 0.042 +/- 0.008 Rjup (statistical and systematic errors respectively), making it slightly larger than expected according to standard models of coreless gas-giant planets. Its equilibrium temperature of 1517 +/- 29 K is within 60K of that of the extensively-studied planet HD 209458b.Comment: Version 2 corrects the accidental omission of one author in the arXiv metadata. Accepted for publication in MNRAS. 9 pages, 4 figures, 7 tables. The properties of HAT-P-5 have been added to the Transiting Extrasolar Planet Catalogue at http://www.astro.keele.ac.uk/~jkt/tepcat

    Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18

    Get PDF
    We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA

    Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy

    Get PDF
    We report the discovery of low-amplitude gravity-mode oscillations in the massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space photometry and 5 months of high-resolution high signal-to-noise spectroscopy. The new data are of unprecedented quality and allowed to improve the orbital and fundamental parameters for this binary. The orbital solution was subtracted from the photometric data and led to the detection of periodic intrinsic variability with frequencies of which some are multiples of the orbital frequency and others are not. Spectral disentangling allowed the detection of line-profile variability in the primary. With our discovery of intrinsic variability interpreted as gravity mode oscillations, V380 Cyg becomes an important laboratory for future seismic tuning of the near-core physics in massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS Letter

    KIC 8410637: a 408-day period eclipsing binary containing a pulsating red giant

    Get PDF
    Detached eclipsing binaries (dEBs) are ideal targets for accurate measurement of masses and radii of ther component stars. If at least one of the stars has evolved off the main sequence (MS), the masses and radii give a strict constraint on the age of the stars. Several dEBs containing a bright K giant and a fainter MS star have been discovered by the Kepler satellite. The mass and radius of a red giant (RG) star can also be derived from its asteroseismic signal. The parameters determined in this way depend on stellar models and may contain systematic errors. It is important to validate the asteroseismically determined mass and radius with independent methods. This can be done when stars are members of stellar clusters or members of dEBs. KIC 8410637 consists of an RG and an MS star. The aim is to derive accurate masses and radii for both components and provide the foundation for a strong test of the asteroseismic method and the accuracy of the deduced mass, radius and age. We analyse high-resolution spectra from three different spectrographs. We also calculate a fit to the Kepler light curve and use ground-based photometry to determine the flux ratios between the component stars in the BVRI passbands. We measured the masses and radii of the stars in the dEB, and the classical parameters Teff, log g and [Fe/H] from the spectra and ground-based photometry. The RG component of KIC 8410637 is most likely in the core helium-burning red clump phase of evolution and has an age and composition very similar to the stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should therefore be similar to the mass of RGs in NGC 6819, thus lending support to the most up-to-date version of the asteroseismic scaling relations. This is the first direct measurement of both mass and radius for an RG to be compared with values for RGs from asteroseismic scaling relations.Comment: Accepted 20.6.2013 for publication in Astronomy and Astrophysic

    A new sdO+dM binary with extreme eclipses and reflection effect

    Get PDF
    We report the discovery of a new totally-eclipsing binary (RA=06:40:29.11; Dec=+38:56:52.2; J=2000.0; Rmax=17.2 mag) with an sdO primary and a strongly irradiated red dwarf companion. It has an orbital period of Porb=0.187284394(11) d and an optical eclipse depth in excess of 5 magnitudes. We obtained two low-resolution classification spectra with GTC/OSIRIS and ten medium-resolution spectra with WHT/ISIS to constrain the properties of the binary members. The spectra are dominated by H Balmer and He II absorption lines from the sdO star, and phase-dependent emission lines from the irradiated companion. A combined spectroscopic and light curve analysis implies a hot subdwarf temperature of Teff(spec) = 55 000 +/- 3000K, surface gravity of log g(phot) = 6.2 +/- 0.04 (cgs) and a He abundance of log(nHe/nH) = -2.24 +/- 0.40. The hot sdO star irradiates the red-dwarf companion, heating its substellar point to about 22 500K. Surface parameters for the companion are difficult to constrain from the currently available data: the most remarkable features are the strong H Balmer and C II-III lines in emission. Radial velocity estimates are consistent with the sdO+dM classification. The photometric data do not show any indication of sdO pulsations with amplitudes greater than 7mmag, and Halpha-filter images do not provide evidence of the presence of a planetary nebula associated with the sdO star.Comment: 13 pages, 5 figures; accepted for publication in Ap

    WASP-43b: The closest-orbiting hot Jupiter

    Full text link
    We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting a hot Jupiter. It also shows a 15.6-d rotation period. The planet has a mass of 1.8 Mjup, a radius of 0.9 Rjup, and with a semi-major axis of only 0.014 AU has the smallest orbital distance of any known hot Jupiter. The discovery of such a planet around a K7V star shows that planets with apparently short remaining lifetimes owing to tidal decay of the orbit are also found around stars with deep convection zones.Comment: 4 page

    Four-colour photometry of eclipsing binaries. XL, uvby light curves for the B-type systems DW Carinae, BF Centauri, AC Velorum, and NSV 5783

    Get PDF
    Aims. In order to increase the limited number of B-stars with accurately known dimensions, and also the number of well studied eclipsing binaries in open clusters, we have undertaken observations and studies of four southern double-lined eclipsing B-type binaries; DWCar, BF Cen, ACVel, and NSV 5783. Methods. Complete uvby light curves were observed between January 1982 and April 1991 at the Danish 0.5 m telescope at ESO La Silla, since 1985 known as the Strömgren Automatic Telescope (SAT). Standard indices for the systems and the comparison stars,as well as additional minima observations for ACVel, have been obtained later at SAT. For DWCar and ACVel, high-resolution spectra for definitive spectroscopic orbits have also been obtained; they are presented as part of the detailed analyses of these systems. A few spectra of NSV 5783 are included in the present paper. Results. For all four systems, the first modern accurate light curves have been established. DWCar is a detached system consisting of two nearly identical components. It is member of the young open cluster Cr228. A detailed analysis, based on the new light curves and 29 high-resolution spectra, is published separately. BFCen is semidetached and is member of NGC 3766. Modern spectra are needed for a detailed study. ACVel is a detached system with at least one more star. A full analysis, based on the new light curves and 18 high-resolution spectra, is published separately. NSV 5783 is discovered to be an eclipsing binary consisting of two well-detached components in an 11-day period eccentric (e = 0.18) orbit. Secondary eclipse is practically total. From the light curves and a few high-resolution spectra, accurate photometric elements and preliminary absolute dimensions have been determined. The quite similar components have masses of about 5 M and radii of about 3.5 R, and they seem to have evolved just slightly off the ZAMS. The measured rotational velocities (≈150 km s−1) are about 6 times those corresponding to pseudosynchronization

    Thermal emission from WASP-24b at 3.6 and 4.5 {\mu}m

    Get PDF
    Aims. We observe occultations of WASP-24b to measure brightness temperatures and to determine whether or not its atmosphere exhibits a thermal inversion (stratosphere). Methods. We observed occultations of WASP-24b at 3.6 and 4.5 {\mu}m using the Spitzer Space Telescope. It has been suggested that there is a correlation between stellar activity and the presence of inversions, so we analysed existing HARPS spectra in order to calculate log R'HK for WASP-24 and thus determine whether or not the star is chromospherically active. We also observed a transit of WASP-24b in the Str\"{o}mgren u and y bands, with the CAHA 2.2-m telescope. Results. We measure occultation depths of 0.159 \pm 0.013 per cent at 3.6 {\mu}m and 0.202 \pm 0.018 per cent at 4.5 {\mu}m. The corresponding planetary brightness temperatures are 1974 \pm 71 K and 1944 \pm 85 K respectively. Atmosphere models with and without a thermal inversion fit the data equally well; we are unable to constrain the presence of an inversion without additional occultation measurements in the near-IR. We find log R'HK = -4.98 \pm 0.12, indicating that WASP-24 is not a chromospherically active star. Our global analysis of new and previously-published data has refined the system parameters, and we find no evidence that the orbit of WASP-24b is non-circular. Conclusions. These results emphasise the importance of complementing Spitzer measurements with observations at shorter wavelengths to gain a full understanding of hot Jupiter atmospheres.Comment: 7 pages, 4 figures, 3 tables. Accepted for publication in A&
    corecore