6 research outputs found

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    VideoLSTM convolves, attends and flows for action recognition

    No full text
    We present VideoLSTM for end-to-end sequence learning of actions in video. Rather than adapting the video to the peculiarities of established recurrent or convolutional architectures, we adapt the architecture to fit the requirements of the video medium. Starting from the soft-Attention LSTM, VideoLSTM makes three novel contributions. First, video has a spatial layout. To exploit the spatial correlation we hardwire convolutions in the soft-Attention LSTM architecture. Second, motion not only informs us about the action content, but also guides better the attention towards the relevant spatio-temporal locations. We introduce motion-based attention. And finally, we demonstrate how the attention from VideoLSTM can be exploited for action localization by relying on the action class label and temporal attention smoothing. Experiments on UCF101, HMDB51 and THUMOS13 reveal the benefit of the video-specific adaptations of VideoLSTM in isolation as well as when integrated in a combined architecture. It compares favorably against other LSTM architectures for action classification and especially action localization

    Evaluation of Immunostaining for MIB1 and nm23 Products in Uterine Cervical Adenocarcinoma.

    No full text

    A Systematic Review of Evidence-based Treatment Strategies for Obsessive- compulsive Disorder Resistant to first-line Pharmacotherapy

    No full text

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Get PDF
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    The article is the pre-print version of the final publishing paper that is available from the link below.Results are presented from searches for the standard model Higgs boson in proton–proton collisions At √s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb−1 at 7TeV and 5.3 fb−1 at 8 TeV. The search is performed in five decay modes: γγ, ZZ, W+W−, τ+τ−, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, γγ and ZZ; a fit to these signals gives a mass of 125.3±0.4(stat.)±0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one
    corecore