144 research outputs found

    Ice-rich (periglacial) vs icy (glacial) depressions in the Argyre region, Mars: a proposed cold-climate dichotomy of landforms

    Get PDF
    On Mars, so-called “scalloped depressions” are widely observed in Utopia Planitia (UP) and Malea Planum (MP). Typically, they are rimless, metres- to decametres-deep, incised sharply, tiered inwardly, polygonised and sometimes pitted. The depressions seemingly incise terrain that is icy and possibly thermokarstic, i.e. produced by the thermal destabilisation of the icy terrain. Agewise, the depressions are thought to be relatively youthful, originating in the Late Amazonian Epoch.Here, we report the presence of similar depressions in the Argyre region (AR) (30–60° S; 290–355° E). More importantly, we separate and differentiate these landforms into two groups: (ice-rich) periglacial depressions (Type-1); and, (icy) glacial depressions (Type-2a-c). This differentiation is presented to the Mars community for the first time.Based on a suite of morphological and geological characteristics synonymous with ice-complexes in the Lena Peninsula (eastern Russia) and the Tuktoyaktuk Coastlands (Northwest Territories, Canada), we propose that the Type-1 depressions are ice-rich periglacial basins that have undergone volatile depletion largely by sublimation and as the result of thermal destabilisation. In keeping with the terms and associated definitions derived of terrestrial periglacial-geomorphology, ice-rich refers to permanently frozen-ground in which ice lenses or segregation ice (collectively referenced as excess ice) have formed.We suggest that the depressions are the product of a multi-step, cold-climate geochronology:(1) Atmospheric precipitation and surface accumulation of an icy mantle during recent high obliquities.(2) Regional or local triple-point conditions and thaw/evaporation of the mantle, either by exogenic forcing, i.e. obliquity-driven rises of aerial and sub-aerial temperatures, or endogenic forcing, i.e. along Argyre impact-related basement structures.(3) Meltwater migration into the regolith, at least to the full depth of the depressions.(4) Freeze-thaw cycling and the formation of excess ice.(5) Sublimation of the excess ice and depression formation as high obliquity dissipates and near-surface ice becomes unstable.The Type-2 depressions exhibit characteristics suggestive of (supra-glacial) dead-ice basins and snow/ice suncups observed in high-alpine landscapes on Earth, e.g. the Swiss Alps and the Himalayas. Like the Type-1 depressions, the Type-2 depressions could be the work of sublimation; however, the latter differ from the former in that they seem to develop within a glacial-like icy mantle that blankets the surface rather than within an ice-rich and periglacially-revised regolith at/near the surface.Interestingly, the Type-2 depressions overlie the Type-1 depressions at some locations. If the periglacial/glacial morphological and stratigraphical dichotomy of depressions is valid, then this points to recent glaciation at some locations within the AR being precursed by at least one episode of periglaciation. This also suggests that periglaciation has a deeper history in the region than has been thought hitherto. Moreover, if the hypothesised differences amongst the Argyre-based depressions are mirrored in Utopia Planitia and Malea Planum, then perhaps this periglacial-glacial dichotomy and its associated geochronology are as relevant to understanding late period landscape-evolution in these two regions as it is in the AR

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF

    Apartheid A conversation revived

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D170646 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore